The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Young-Hoon KIM(2hit)

1-2hit
  • Emission Security Limits for Compromising Emanations Using Electromagnetic Emanation Security Channel Analysis

    Hee-Kyung LEE  Yong-Hwa KIM  Young-Hoon KIM  Seong-Cheol KIM  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E96-B No:10
      Page(s):
    2639-2649

    In this paper, we propose periodic and aperiodic security limits for compromising emanations in the VHF and UHF bands. First, we perform the electromagnetic emanation security (EMSEC)-channel measurements in the 200-1000MHz frequency bands. Second, we analyse the pathloss characteristics of the indoor EMSEC-channel based on these measurements. Through this EMSEC-channel analysis, we affirm that the total radio attenuation, which is one of the key parameters for determining the security limits for compromising emanations, follows the Rician distribution. With these results, we propose that periodic and aperiodic emission security limits can be classified into two levels depending on the total radio attenuation and the extent of required confidentiality. The proposed security limits are compared with other security limits and existing civil and military EMC standards.

  • Human Body Affected Small-Scale Fading for Indoor UWB Channel

    Young-Hoon KIM  Jae-Hyun LEE  Jung Yong LEE  Seong-Cheol KIM  

     
    PAPER-Antennas and Propagation

      Vol:
    E98-B No:8
      Page(s):
    1589-1597

    This paper deals with the small-scale fading distribution for UWB channels in the absence and presence of human bodies in indoor line-of-sight (LOS) environments and performance analysis of UWB systems considering the small-scale fading distribution. To obtain small-scale fading statistics, the channel measurements are performed in five representative environments that have different structure and size while locating the receiver (Rx) antenna on 49 (7×7 grid) local points with a fixed transmitter (Tx) antenna in each environment. The measured channel data are processed by a vector network analyzer and the target frequency bands range from 3 to 4.6GHz. From the measured data, we find the best fitted channel model among several typical theoretical distribution models such as Lognormal, Nakagami, and Weibull distributions, showing good agreement with the empirical channel data. We analyze the amplitude variation of the small-scale fading distribution in the absence and presence of human bodies. The results show that the small-scale fading statistics are best described by Weibull distribution and the two parameters of the distribution that determine the shape and the scale of the distribution depend on whether or not human bodies exist. We modeled and analyzed two parameters at different excess delays for all environments. Based on the measured small-scale fading distribution, this paper deals with the performance of UWB system using Rake receivers and also compares the performance with the existing channel model. The results suggest that the small-scale fading distribution in the absence and the presence of human bodies in indoor LOS environments should be considered when assessing the performance of UWB systems.