This paper deals with the small-scale fading distribution for UWB channels in the absence and presence of human bodies in indoor line-of-sight (LOS) environments and performance analysis of UWB systems considering the small-scale fading distribution. To obtain small-scale fading statistics, the channel measurements are performed in five representative environments that have different structure and size while locating the receiver (Rx) antenna on 49 (7×7 grid) local points with a fixed transmitter (Tx) antenna in each environment. The measured channel data are processed by a vector network analyzer and the target frequency bands range from 3 to 4.6GHz. From the measured data, we find the best fitted channel model among several typical theoretical distribution models such as Lognormal, Nakagami, and Weibull distributions, showing good agreement with the empirical channel data. We analyze the amplitude variation of the small-scale fading distribution in the absence and presence of human bodies. The results show that the small-scale fading statistics are best described by Weibull distribution and the two parameters of the distribution that determine the shape and the scale of the distribution depend on whether or not human bodies exist. We modeled and analyzed two parameters at different excess delays for all environments. Based on the measured small-scale fading distribution, this paper deals with the performance of UWB system using Rake receivers and also compares the performance with the existing channel model. The results suggest that the small-scale fading distribution in the absence and the presence of human bodies in indoor LOS environments should be considered when assessing the performance of UWB systems.
Young-Hoon KIM
Seoul National University
Jae-Hyun LEE
Seoul National University
Jung Yong LEE
Seoul National University
Seong-Cheol KIM
Seoul National University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Young-Hoon KIM, Jae-Hyun LEE, Jung Yong LEE, Seong-Cheol KIM, "Human Body Affected Small-Scale Fading for Indoor UWB Channel" in IEICE TRANSACTIONS on Communications,
vol. E98-B, no. 8, pp. 1589-1597, August 2015, doi: 10.1587/transcom.E98.B.1589.
Abstract: This paper deals with the small-scale fading distribution for UWB channels in the absence and presence of human bodies in indoor line-of-sight (LOS) environments and performance analysis of UWB systems considering the small-scale fading distribution. To obtain small-scale fading statistics, the channel measurements are performed in five representative environments that have different structure and size while locating the receiver (Rx) antenna on 49 (7×7 grid) local points with a fixed transmitter (Tx) antenna in each environment. The measured channel data are processed by a vector network analyzer and the target frequency bands range from 3 to 4.6GHz. From the measured data, we find the best fitted channel model among several typical theoretical distribution models such as Lognormal, Nakagami, and Weibull distributions, showing good agreement with the empirical channel data. We analyze the amplitude variation of the small-scale fading distribution in the absence and presence of human bodies. The results show that the small-scale fading statistics are best described by Weibull distribution and the two parameters of the distribution that determine the shape and the scale of the distribution depend on whether or not human bodies exist. We modeled and analyzed two parameters at different excess delays for all environments. Based on the measured small-scale fading distribution, this paper deals with the performance of UWB system using Rake receivers and also compares the performance with the existing channel model. The results suggest that the small-scale fading distribution in the absence and the presence of human bodies in indoor LOS environments should be considered when assessing the performance of UWB systems.
URL: https://global.ieice.org/en_transactions/communications/10.1587/transcom.E98.B.1589/_p
Copy
@ARTICLE{e98-b_8_1589,
author={Young-Hoon KIM, Jae-Hyun LEE, Jung Yong LEE, Seong-Cheol KIM, },
journal={IEICE TRANSACTIONS on Communications},
title={Human Body Affected Small-Scale Fading for Indoor UWB Channel},
year={2015},
volume={E98-B},
number={8},
pages={1589-1597},
abstract={This paper deals with the small-scale fading distribution for UWB channels in the absence and presence of human bodies in indoor line-of-sight (LOS) environments and performance analysis of UWB systems considering the small-scale fading distribution. To obtain small-scale fading statistics, the channel measurements are performed in five representative environments that have different structure and size while locating the receiver (Rx) antenna on 49 (7×7 grid) local points with a fixed transmitter (Tx) antenna in each environment. The measured channel data are processed by a vector network analyzer and the target frequency bands range from 3 to 4.6GHz. From the measured data, we find the best fitted channel model among several typical theoretical distribution models such as Lognormal, Nakagami, and Weibull distributions, showing good agreement with the empirical channel data. We analyze the amplitude variation of the small-scale fading distribution in the absence and presence of human bodies. The results show that the small-scale fading statistics are best described by Weibull distribution and the two parameters of the distribution that determine the shape and the scale of the distribution depend on whether or not human bodies exist. We modeled and analyzed two parameters at different excess delays for all environments. Based on the measured small-scale fading distribution, this paper deals with the performance of UWB system using Rake receivers and also compares the performance with the existing channel model. The results suggest that the small-scale fading distribution in the absence and the presence of human bodies in indoor LOS environments should be considered when assessing the performance of UWB systems.},
keywords={},
doi={10.1587/transcom.E98.B.1589},
ISSN={1745-1345},
month={August},}
Copy
TY - JOUR
TI - Human Body Affected Small-Scale Fading for Indoor UWB Channel
T2 - IEICE TRANSACTIONS on Communications
SP - 1589
EP - 1597
AU - Young-Hoon KIM
AU - Jae-Hyun LEE
AU - Jung Yong LEE
AU - Seong-Cheol KIM
PY - 2015
DO - 10.1587/transcom.E98.B.1589
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E98-B
IS - 8
JA - IEICE TRANSACTIONS on Communications
Y1 - August 2015
AB - This paper deals with the small-scale fading distribution for UWB channels in the absence and presence of human bodies in indoor line-of-sight (LOS) environments and performance analysis of UWB systems considering the small-scale fading distribution. To obtain small-scale fading statistics, the channel measurements are performed in five representative environments that have different structure and size while locating the receiver (Rx) antenna on 49 (7×7 grid) local points with a fixed transmitter (Tx) antenna in each environment. The measured channel data are processed by a vector network analyzer and the target frequency bands range from 3 to 4.6GHz. From the measured data, we find the best fitted channel model among several typical theoretical distribution models such as Lognormal, Nakagami, and Weibull distributions, showing good agreement with the empirical channel data. We analyze the amplitude variation of the small-scale fading distribution in the absence and presence of human bodies. The results show that the small-scale fading statistics are best described by Weibull distribution and the two parameters of the distribution that determine the shape and the scale of the distribution depend on whether or not human bodies exist. We modeled and analyzed two parameters at different excess delays for all environments. Based on the measured small-scale fading distribution, this paper deals with the performance of UWB system using Rake receivers and also compares the performance with the existing channel model. The results suggest that the small-scale fading distribution in the absence and the presence of human bodies in indoor LOS environments should be considered when assessing the performance of UWB systems.
ER -