The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] BER(1217hit)

1-20hit(1217hit)

  • Enhanced Spatial Modulation Based Orthogonal Time Frequency Space System Open Access

    Anoop A  Christo K. THOMAS  Kala S  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E107-B No:11
      Page(s):
    785-796

    In this paper, a novel Enhanced Spatial Modulation-based Orthogonal Time Frequency Space (ESM-OTFS) is proposed to maximize the benefits of enhanced spatial modulation (ESM) and orthogonal time frequency space (OTFS) transmission. The primary objective of this novel modulation is to enhance transmission reliability, meeting the demanding requirements of high transmission rates and rapid data transfer in future wireless communication systems. The paper initially outlines the system model and specific signal processing techniques employed in ESM-OTFS. Furthermore, a novel detector based on sparse signal estimation is presented specifically for ESM-OTFS. The sparse signal estimation is performed using a fully factorized posterior approximation using Variational Bayesian Inference that leads to a low complexity solution without any matrix inversions. Simulation results indicate that ESM-OTFS surpasses traditional spatial modulation-based OTFS, and the newly introduced detection algorithm outperforms other linear detection methods.

  • Joint Optimization of Task Offloading and Resource Allocation for UAV-Assisted Edge Computing: A Stackelberg Bilayer Game Approach Open Access

    Peng WANG  Guifen CHEN  Zhiyao SUN  

     
    PAPER-Information Network

      Pubricized:
    2024/05/21
      Vol:
    E107-D No:9
      Page(s):
    1174-1181

    Unmanned Aerial Vehicle (UAV)-assisted Mobile Edge Computing (MEC) can provide mobile users (MU) with additional computing services and a wide range of connectivity. This paper investigates the joint optimization strategy of task offloading and resource allocation for UAV-assisted MEC systems in complex scenarios with the goal of reducing the total system cost, consisting of task execution latency and energy consumption. We adopt a game theoretic approach to model the interaction process between the MEC server and the MU Stackelberg bilayer game model. Then, the original problem with complex multi-constraints is transformed into a duality problem using the Lagrangian duality method. Furthermore, we prove that the modeled Stackelberg bilayer game has a unique Nash equilibrium solution. In order to obtain an approximate optimal solution to the proposed problem, we propose a two-stage alternating iteration (TASR) algorithm based on the subgradient method and the marginal revenue optimization method. We evaluate the effective performance of the proposed algorithm through detailed simulation experiments. The simulation results show that the proposed algorithm is superior and robust compared to other benchmark methods and can effectively reduce the task execution latency and total system cost in different scenarios.

  • 6T-8T Hybrid SRAM for Lower-Power Neural-Network Processing by Lowering Operating Voltage Open Access

    Ji WU  Ruoxi YU  Kazuteru NAMBA  

     
    LETTER-Computer System

      Pubricized:
    2024/05/20
      Vol:
    E107-D No:9
      Page(s):
    1278-1280

    This letter introduces an innovation for the heterogeneous storage architecture of AI chips, specifically focusing on the integration of six transistors(6T) and eight transistors(8T) hybrid SRAM. Traditional approaches to reducing SRAM power consumption typically involve lowering the operating voltage, a method that often substantially diminishes the recognition rate of neural networks. However, the innovative design detailed in this letter amalgamates the strengths of both SRAM types. It operates at a voltage lower than conventional SRAM, thereby significantly reducing the power consumption in neural networks without compromising performance.

  • Determination Method of Cascaded Number for Lumped Parameter Models Oriented to Transmission Lines Open Access

    Risheng QIN  Hua KUANG  He JIANG  Hui YU  Hong LI  Zhuan LI  

     
    PAPER-Electronic Circuits

      Pubricized:
    2023/12/20
      Vol:
    E107-C No:7
      Page(s):
    201-209

    This paper proposes a determination method of the cascaded number for lumped parameter models (LPMs) of the transmission lines. The LPM is used to simulate long-distance transmission lines, and the cascaded number significantly impacts the simulation results. Currently, there is a lack of a system-level determination method of the cascaded number for LPMs. Based on the theoretical analysis and eigenvalue decomposition of network matrix, this paper discusses the error in resonance characteristics between distributed parameter model and LPMs. Moreover, it is deduced that optimal cascaded numbers of the cascaded π-type and T-type LPMs are the same, and the Γ-type LPM has a lowest analog accuracy. The principle that the maximum simulation frequency is less than the first resonance frequency of each segment is presented. According to the principle, optimal cascaded numbers of cascaded π-type, T-type, and Γ-type LPMs are obtained. The effectiveness of the proposed determination method is verified by simulation.

  • Understanding Characteristics of Phishing Reports from Experts and Non-Experts on Twitter Open Access

    Hiroki NAKANO  Daiki CHIBA  Takashi KOIDE  Naoki FUKUSHI  Takeshi YAGI  Takeo HARIU  Katsunari YOSHIOKA  Tsutomu MATSUMOTO  

     
    PAPER-Information Network

      Pubricized:
    2024/03/01
      Vol:
    E107-D No:7
      Page(s):
    807-824

    The increase in phishing attacks through email and short message service (SMS) has shown no signs of deceleration. The first thing we need to do to combat the ever-increasing number of phishing attacks is to collect and characterize more phishing cases that reach end users. Without understanding these characteristics, anti-phishing countermeasures cannot evolve. In this study, we propose an approach using Twitter as a new observation point to immediately collect and characterize phishing cases via e-mail and SMS that evade countermeasures and reach users. Specifically, we propose CrowdCanary, a system capable of structurally and accurately extracting phishing information (e.g., URLs and domains) from tweets about phishing by users who have actually discovered or encountered it. In our three months of live operation, CrowdCanary identified 35,432 phishing URLs out of 38,935 phishing reports. We confirmed that 31,960 (90.2%) of these phishing URLs were later detected by the anti-virus engine, demonstrating that CrowdCanary is superior to existing systems in both accuracy and volume of threat extraction. We also analyzed users who shared phishing threats by utilizing the extracted phishing URLs and categorized them into two distinct groups - namely, experts and non-experts. As a result, we found that CrowdCanary could collect information that is specifically included in non-expert reports, such as information shared only by the company brand name in the tweet, information about phishing attacks that we find only in the image of the tweet, and information about the landing page before the redirect. Furthermore, we conducted a detailed analysis of the collected information on phishing sites and discovered that certain biases exist in the domain names and hosting servers of phishing sites, revealing new characteristics useful for unknown phishing site detection.

  • Output Feedback Ultimate Boundedness Control with Decentralized Event-Triggering Open Access

    Koichi KITAMURA  Koichi KOBAYASHI  Yuh YAMASHITA  

     
    PAPER

      Pubricized:
    2023/11/10
      Vol:
    E107-A No:5
      Page(s):
    770-778

    In cyber-physical systems (CPSs) that interact between physical and information components, there are many sensors that are connected through a communication network. In such cases, the reduction of communication costs is important. Event-triggered control that the control input is updated only when the measured value is widely changed is well known as one of the control methods of CPSs. In this paper, we propose a design method of output feedback controllers with decentralized event-triggering mechanisms, where the notion of uniformly ultimate boundedness is utilized as a control specification. Using this notion, we can guarantee that the state stays within a certain set containing the origin after a certain time, which depends on the initial state. As a result, the number of times that the event occurs can be decreased. First, the design problem is formulated. Next, this problem is reduced to a BMI (bilinear matrix inequality) optimization problem, which can be solved by solving multiple LMI (linear matrix inequality) optimization problems. Finally, the effectiveness of the proposed method is presented by a numerical example.

  • Effects of Electromagnet Interference on Speed and Position Estimations of Sensorless SPMSM Open Access

    Yuanhe XUE  Wei YAN  Xuan LIU  Mengxia ZHOU  Yang ZHAO  Hao MA  

     
    PAPER-Electromechanical Devices and Components

      Pubricized:
    2023/11/10
      Vol:
    E107-C No:5
      Page(s):
    124-131

    Model-based sensorless control of permanent magnet synchronous motor (PMSM) is promising for high-speed operation to estimate motor state, which is the speed and the position of the rotor, via electric signals of the stator, beside the inevitable fact that estimation accuracy is degraded by electromagnet interference (EMI) from switching devices of the converter. In this paper, the simulation system based on Luenberger observer and phase-locked loop (PLL) has been established, analyzing impacts of EMI on motor state estimations theoretically, exploring influences of EMI with different cutoff frequency, rated speeds, frequencies and amplitudes. The results show that Luenberger observer and PLL have strong immunity, which enable PMSM can still operate stably even under certain degrees of interference. EMI produces sideband harmonics that enlarge pulsation errors of speed and position estimations. Additionally, estimation errors are positively correlated with cutoff frequency of low-pass filter and the amplitude of EMI, and negatively correlated with rated speed of the motor and the frequency of EMI.  When the frequency is too high, its effects on motor state estimations are negligible. This work contributes to the comprehensive understanding of how EMI affects motor state estimations, which further enhances practical application of sensorless PMSM.

  • Automated Labeling of Entities in CVE Vulnerability Descriptions with Natural Language Processing Open Access

    Kensuke SUMOTO  Kenta KANAKOGI  Hironori WASHIZAKI  Naohiko TSUDA  Nobukazu YOSHIOKA  Yoshiaki FUKAZAWA  Hideyuki KANUKA  

     
    PAPER

      Pubricized:
    2024/02/09
      Vol:
    E107-D No:5
      Page(s):
    674-682

    Security-related issues have become more significant due to the proliferation of IT. Collating security-related information in a database improves security. For example, Common Vulnerabilities and Exposures (CVE) is a security knowledge repository containing descriptions of vulnerabilities about software or source code. Although the descriptions include various entities, there is not a uniform entity structure, making security analysis difficult using individual entities. Developing a consistent entity structure will enhance the security field. Herein we propose a method to automatically label select entities from CVE descriptions by applying the Named Entity Recognition (NER) technique. We manually labeled 3287 CVE descriptions and conducted experiments using a machine learning model called BERT to compare the proposed method to labeling with regular expressions. Machine learning using the proposed method significantly improves the labeling accuracy. It has an f1 score of about 0.93, precision of about 0.91, and recall of about 0.95, demonstrating that our method has potential to automatically label select entities from CVE descriptions.

  • A Lightweight Graph Neural Networks Based Enhanced Separated Detection Scheme for Downlink MIMO-SCMA Systems Open Access

    Zikang CHEN  Wenping GE  Henghai FEI  Haipeng ZHAO  Bowen LI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E107-B No:4
      Page(s):
    368-376

    The combination of multiple-input multiple-output (MIMO) technology and sparse code multiple access (SCMA) can significantly enhance the spectral efficiency of future wireless communication networks. However, the receiver design for downlink MIMO-SCMA systems faces challenges in developing multi-user detection (MUD) schemes that achieve both low latency and low bit error rate (BER). The separated detection scheme in the MIMO-SCMA system involves performing MIMO detection first to obtain estimated signals, followed by SCMA decoding. We propose an enhanced separated detection scheme based on lightweight graph neural networks (GNNs). In this scheme, we raise the concept of coordinate point relay and full-category training, which allow for the substitution of the conventional message passing algorithm (MPA) in SCMA decoding with image classification techniques based on deep learning (DL). The features of the images used for training encompass crucial information such as the amplitude and phase of estimated signals, as well as channel characteristics they have encountered. Furthermore, various types of images demonstrate distinct directional trends, contributing additional features that enhance the precision of classification by GNNs. Simulation results demonstrate that the enhanced separated detection scheme outperforms existing separated and joint detection schemes in terms of computational complexity, while having a better BER performance than the joint detection schemes at high Eb/N0 (energy per bit to noise power spectral density ratio) values.

  • PSDSpell: Pre-Training with Self-Distillation Learning for Chinese Spelling Correction Open Access

    Li HE  Xiaowu ZHANG  Jianyong DUAN  Hao WANG  Xin LI  Liang ZHAO  

     
    PAPER

      Pubricized:
    2023/10/25
      Vol:
    E107-D No:4
      Page(s):
    495-504

    Chinese spelling correction (CSC) models detect and correct a text typo based on the misspelled character and its context. Recently, Bert-based models have dominated the research of Chinese spelling correction. However, these methods only focus on the semantic information of the text during the pretraining stage, neglecting the learning of correcting spelling errors. Moreover, when multiple incorrect characters are in the text, the context introduces noisy information, making it difficult for the model to accurately detect the positions of the incorrect characters, leading to false corrections. To address these limitations, we apply the multimodal pre-trained language model ChineseBert to the task of spelling correction. We propose a self-distillation learning-based pretraining strategy, where a confusion set is used to construct text containing erroneous characters, allowing the model to jointly learns how to understand language and correct spelling errors. Additionally, we introduce a single-channel masking mechanism to mitigate the noise caused by the incorrect characters. This mechanism masks the semantic encoding channel while preserving the phonetic and glyph encoding channels, reducing the noise introduced by incorrect characters during the prediction process. Finally, experiments are conducted on widely used benchmarks. Our model achieves superior performance against state-of-the-art methods by a remarkable gain.

  • Hilbert Series for Systems of UOV Polynomials

    Yasuhiko IKEMATSU  Tsunekazu SAITO  

     
    PAPER

      Pubricized:
    2023/09/11
      Vol:
    E107-A No:3
      Page(s):
    275-282

    Multivariate public key cryptosystems (MPKC) are constructed based on the problem of solving multivariate quadratic equations (MQ problem). Among various multivariate schemes, UOV is an important signature scheme since it is underlying some signature schemes such as MAYO, QR-UOV, and Rainbow which was a finalist of NIST PQC standardization project. To analyze the security of a multivariate scheme, it is necessary to analyze the first fall degree or solving degree for the system of polynomial equations used in specific attacks. It is known that the first fall degree or solving degree often relates to the Hilbert series of the ideal generated by the system. In this paper, we study the Hilbert series of the UOV scheme, and more specifically, we study the Hilbert series of ideals generated by quadratic polynomials used in the central map of UOV. In particular, we derive a prediction formula of the Hilbert series by using some experimental results. Moreover, we apply it to the analysis of the reconciliation attack for MAYO.

  • Ising-Machine-Based Solver for Constrained Graph Coloring Problems

    Soma KAWAKAMI  Yosuke MUKASA  Siya BAO  Dema BA  Junya ARAI  Satoshi YAGI  Junji TERAMOTO  Nozomu TOGAWA  

     
    PAPER

      Pubricized:
    2023/09/12
      Vol:
    E107-A No:1
      Page(s):
    38-51

    Ising machines can find optimum or quasi-optimum solutions of combinatorial optimization problems efficiently and effectively. The graph coloring problem, which is one of the difficult combinatorial optimization problems, is to assign a color to each vertex of a graph such that no two vertices connected by an edge have the same color. Although methods to map the graph coloring problem onto the Ising model or quadratic unconstrained binary optimization (QUBO) model are proposed, none of them considers minimizing the number of colors. In addition, there is no Ising-machine-based method considering additional constraints in order to apply to practical problems. In this paper, we propose a mapping method of the graph coloring problem including minimizing the number of colors and additional constraints to the QUBO model. As well as the constraint terms for the graph coloring problem, we firstly propose an objective function term that can minimize the number of colors so that the number of used spins cannot increase exponentially. Secondly, we propose two additional constraint terms: One is that specific vertices have to be colored with specified colors; The other is that specific colors cannot be used more than the number of times given in advance. We theoretically prove that, if the energy of the proposed QUBO mapping is minimized, all the constraints are satisfied and the objective function is minimized. The result of the experiment using an Ising machine showed that the proposed method reduces the number of used colors by up to 75.1% on average compared to the existing baseline method when additional constraints are not considered. Considering the additional constraints, the proposed method can effectively find feasible solutions satisfying all the constraints.

  • A Single-Inverter-Based True Random Number Generator with On-Chip Clock-Tuning-Based Entropy Calibration Circuit

    Xingyu WANG  Ruilin ZHANG  Hirofumi SHINOHARA  

     
    PAPER

      Pubricized:
    2023/07/21
      Vol:
    E107-A No:1
      Page(s):
    105-113

    This paper introduces an inverter-based true random number generator (I-TRNG). It uses a single CMOS inverter to amplify thermal noise multiple times. An adaptive calibration mechanism based on clock tuning provides robust operation across a wide range of supply voltage 0.5∼1.1V and temperature -40∼140°C. An 8-bit Von-Neumann post-processing circuit (VN8W) is implemented for maximum raw entropy extraction. In a 130nm CMOS technology, the I-TRNG entropy source only occupies 635μm2 and consumes 0.016pJ/raw-bit at 0.6V. The I-TRNG occupies 13406μm2, including the entropy source, adaptive calibration circuit, and post-processing circuit. The minimum energy consumption of the I-TRNG is 1.38pJ/bit at 0.5V, while passing all NIST 800-22 and 800-90B tests. Moreover, an equivalent 15-year life at 0.7V, 25°C is confirmed by an accelerated NBTI aging test.

  • A Simple Design of Reconfigurable Intelligent Surface-Assisted Index Modulation: Generalized Reflected Phase Modulation

    Chaorong ZHANG  Yuyang PENG  Ming YUE  Fawaz AL-HAZEMI  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2023/05/30
      Vol:
    E107-A No:1
      Page(s):
    182-186

    As a potential member of next generation wireless communications, the reconfigurable intelligent surface (RIS) can control the reflected elements to adjust the phase of the transmitted signal with less energy consumption. A novel RIS-assisted index modulation scheme is proposed in this paper, which is named the generalized reflected phase modulation (GRPM). In the GRPM, the transmitted bits are mapped into the reflected phase combination which is conveyed through the reflected elements on the RIS, and detected by the maximum likelihood (ML) detector. The performance analysis of the GRPM with the ML detector is presented, in which the closed form expression of pairwise error probability is derived. The simulation results show the bit error rate (BER) performance of GRPM by comparing with various RIS-assisted index modulation schemes in the conditions of various spectral efficiency and number of antennas.

  • Antennas Measurement for Millimeter Wave 5G Wireless Applications Using Radio Over Fiber Technologies Open Access

    Satoru KUROKAWA  Michitaka AMEYA  Yui OTAGAKI  Hiroshi MURATA  Masatoshi ONIZAWA  Masahiro SATO  Masanobu HIROSE  

     
    INVITED PAPER

      Pubricized:
    2023/09/19
      Vol:
    E106-B No:12
      Page(s):
    1313-1321

    We have developed an all-optical fiber link antenna measurement system for a millimeter wave 5th generation mobile communication frequency band around 28 GHz. Our developed system consists of an optical fiber link an electrical signal transmission system, an antenna-coupled-electrode electric-field (EO) sensor system for 28GHz-band as an electrical signal receiving system, and a 6-axis vertically articulated robot with an arm length of 1m. Our developed optical fiber link electrical signal transmission system can transmit the electrical signal of more than 40GHz with more than -30dBm output level. Our developed EO sensor can receive the electrical signal from 27GHz to 30GHz. In addition, we have estimated a far field antenna factor of the EO sensor system for the 28GHz-band using an amplitude center modified antenna factor estimation equation. The estimated far field antenna factor of the sensor system is 83.2dB/m at 28GHz.

  • Deep Neural Networks Based End-to-End DOA Estimation System Open Access

    Daniel Akira ANDO  Yuya KASE  Toshihiko NISHIMURA  Takanori SATO  Takeo OHGANE  Yasutaka OGAWA  Junichiro HAGIWARA  

     
    PAPER

      Pubricized:
    2023/09/11
      Vol:
    E106-B No:12
      Page(s):
    1350-1362

    Direction of arrival (DOA) estimation is an antenna array signal processing technique used in, for instance, radar and sonar systems, source localization, and channel state information retrieval. As new applications and use cases appear with the development of next generation mobile communications systems, DOA estimation performance must be continually increased in order to support the nonstop growing demand for wireless technologies. In previous works, we verified that a deep neural network (DNN) trained offline is a strong candidate tool with the promise of achieving great on-grid DOA estimation performance, even compared to traditional algorithms. In this paper, we propose new techniques for further DOA estimation accuracy enhancement incorporating signal-to-noise ratio (SNR) prediction and an end-to-end DOA estimation system, which consists of three components: source number estimator, DOA angular spectrum grid estimator, and DOA detector. Here, we expand the performance of the DOA detector and angular spectrum estimator, and present a new solution for source number estimation based on DNN with very simple design. The proposed DNN system applied with said enhancement techniques has shown great estimation performance regarding the success rate metric for the case of two radio wave sources although not fully satisfactory results are obtained for the case of three sources.

  • Stackelberg Game for Wireless-Powered Relays Assisted Batteryless IoT Networks

    Yanming CHEN  Bin LYU  Zhen YANG  Fei LI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/08/10
      Vol:
    E106-B No:12
      Page(s):
    1479-1490

    In this paper, we investigate a wireless-powered relays assisted batteryless IoT network based on the non-linear energy harvesting model, where there exists an energy service provider constituted by the hybrid access point (HAP) and an IoT service provider constituted by multiple clusters. The HAP provides energy signals to the batteryless devices for information backscattering and the wireless-powered relays for energy harvesting. The relays are deployed to assist the batteryless devices with the information transmission to the HAP by using the harvested energy. To model the energy interactions between the energy service provider and IoT service provider, we propose a Stackelberg game based framework. We aim to maximize the respective utility values of the two providers. Since the utility maximization problem of the IoT service provider is non-convex, we employ the fractional programming theory and propose a block coordinate descent (BCD) based algorithm with successive convex approximation (SCA) and semi-definite relaxation (SDR) techniques to solve it. Numerical simulation results confirm that compared to the benchmark schemes, our proposed scheme can achieve larger utility values for both the energy service provider and IoT service provider.

  • Ferrule Endface Dimension Optimization for Standard Outer Diameter 4-Core Fiber Connector

    Kiyoshi KAMIMURA  Yuki FUJIMAKI  Kentaro MATSUDA  Ryo NAGASE  

     
    PAPER

      Pubricized:
    2023/10/02
      Vol:
    E106-C No:12
      Page(s):
    781-788

    Physical contact (PC) optical connectors realize long-term stability by maintaining contact with the optical fiber even during temperature fluctuations caused by the microscopic displacement of the ferrule endface. With multicore fiber (MCF) connectors, stable PC connection conditions need to be newly investigated because MCFs have cores other than at the center. In this work, we investigated the microscopic displacement of connected ferrule endfaces using the finite element method (FEM). As a result, by using MCF connectors with an apex offset, we found that the allowable fiber undercut where all the cores make contact is slightly smaller than that of single-mode fiber (SMF) connectors. Therefore, we propose a new equation for determining the allowable fiber undercut of MCF connectors. We also fabricated MCF connectors with an allowable fiber undercut and confirmed their reliability using the composite temperature/humidity cyclic test.

  • Design and Implementation of an On-Line Quality Control System for Latch-Based True Random Number Generator

    Naoki FUJIEDA  Shuichi ICHIKAWA  Ryusei OYA  Hitomi KISHIBE  

     
    PAPER

      Pubricized:
    2023/03/24
      Vol:
    E106-D No:12
      Page(s):
    1940-1950

    This paper presents a design and an implementation of an on-line quality control method for a TRNG (True Random Number Generator) on an FPGA. It is based on a TRNG with RS latches and a temporal XOR corrector, which can make a trade-off between throughput and randomness quality by changing the number of accumulations by XOR. The goal of our method is to increase the throughput within the range of keeping the quality of output random numbers. In order to detect a sign of the loss of quality from the TRNG in parallel with random number generation, our method distinguishes random bitstrings to be tested from those to be output. The test bitstring is generated with the fewer number of accumulations than that of the output bitstring. The number of accumulations will be increased if the test bitstring fails in the randomness test. We designed and evaluated a prototype of on-line quality control system, using a Zynq-7000 FPGA SoC. The results indicate that the TRNG with the proposed method achieved 1.91-2.63 Mbits/s of throughput with 16 latches, following the change of the quality of output random numbers. The total number of logic elements in the prototype system with 16 latches was comparable to an existing system with 256 latches, without quality control capabilities.

  • Evaluating Energy Consumption of Internet Services Open Access

    Leif Katsuo OXENLØWE  Quentin SAUDAN  Jasper RIEBESEHL  Mujtaba ZAHIDY  Smaranika SWAIN  

     
    INVITED PAPER

      Pubricized:
    2023/06/15
      Vol:
    E106-B No:11
      Page(s):
    1036-1043

    This paper summarizes recent reports on the internet's energy consumption and the internet's benefits on climate actions. It discusses energy-efficiency and the need for a common standard for evaluating the climate impact of future communication technologies and suggests a model that can be adapted to different internet applications such as streaming, online reading and downloading. The two main approaches today are based on how much data is transmitted or how much time the data is under way. The paper concludes that there is a need for a standardized method to estimate energy consumption and CO2 emission related to internet services. This standard should include a method for energy-optimizing future networks, where every Wh will be scrutinized.

1-20hit(1217hit)