1-4hit |
Limin CHEN Jing XU Peter Xiaoping LIU Hui YU
Compressive spectral imaging (CSI) systems capture the 3D spatiospectral data by measuring the 2D compressed focal plane array (FPA) coded projection with the help of reconstruction algorithms exploiting the sparsity of signals. However, the contradiction between the multi-dimension of the scenes and the limited dimension of the sensors has limited improvement of recovery performance. In order to solve the problem, a novel CSI system based on a coded aperture snapshot spectral imager, RGB-CASSI, is proposed, which has two branches, one for CASSI, another for RGB images. In addition, considering that conventional reconstruction algorithms lead to oversmoothing, a RGB-guided low-rank (RGBLR) method for compressive hyperspectral image reconstruction based on compressed sensing and coded aperture spectral imaging system is presented, in which the available additional RGB information is used to guide the reconstruction and a low-rank regularization for compressive sensing and a non-convex surrogate of the rank is also used instead of nuclear norm for seeking a preferable solution. Experiments show that the proposed algorithm performs better in both PSNR and subjective effects compared with other state-of-art methods.
Deep learning techniques are used to transform the style of images and produce diverse images. In the text style transformation field, many previous studies attempted to generate stylized text using deep learning networks. However, to achieve multiple style transformations for text images, the methods proposed in previous studies require learning multiple networks or cannot be guided by style images. Thus, in this study we focused on multistyle transformation of text images using style images to guide the generation of results. We propose a multiple-style transformation network for text style transfer, which we refer to as the Multi-Style Shape Matching GAN (Multi-Style SMGAN). The proposed method generates multiple styles of text images using a single model by training the model only once, and allows users to control the text style according to style images. The proposed method implements conditions to the network such that all styles can be distinguished effectively in the network, and the generation of each styled text can be controlled according to these conditions. The proposed network is optimized such that the conditional information can be transmitted effectively throughout the network. The proposed method was evaluated experimentally on a large number of text images, and the results show that the trained model can generate multiple-style text in realtime according to the style image. In addition, the results of a user survey study indicate that the proposed method produces higher quality results compared to existing methods.
Risheng QIN Hua KUANG He JIANG Hui YU Hong LI Zhuan LI
This paper proposes a determination method of the cascaded number for lumped parameter models (LPMs) of the transmission lines. The LPM is used to simulate long-distance transmission lines, and the cascaded number significantly impacts the simulation results. Currently, there is a lack of a system-level determination method of the cascaded number for LPMs. Based on the theoretical analysis and eigenvalue decomposition of network matrix, this paper discusses the error in resonance characteristics between distributed parameter model and LPMs. Moreover, it is deduced that optimal cascaded numbers of the cascaded π-type and T-type LPMs are the same, and the Γ-type LPM has a lowest analog accuracy. The principle that the maximum simulation frequency is less than the first resonance frequency of each segment is presented. According to the principle, optimal cascaded numbers of cascaded π-type, T-type, and Γ-type LPMs are obtained. The effectiveness of the proposed determination method is verified by simulation.
An-shui YU Kenji HARA Kohei INOUE Kiichi URAHAMA
In this paper, we propose a method for enhancing the visibility of omnidirectional spherical images by enlarging the foreground and compressing the background without provoking a sense of visual incompatibility by using a simplified spring model.