The search functionality is under construction.

Keyword Search Result

[Keyword] BER(1214hit)

81-100hit(1214hit)

  • Salient Chromagram Extraction Based on Trend Removal for Cover Song Identification

    Jin S. SEO  

     
    LETTER

      Pubricized:
    2020/10/19
      Vol:
    E104-D No:1
      Page(s):
    51-54

    This paper proposes a salient chromagram by removing local trend to improve cover song identification accuracy. The proposed salient chromagram emphasizes tonal contents of music, which are well-preserved between an original song and its cover version, while reducing the effects of timber difference. We apply the proposed salient chromagram to the sequence-alignment based cover song identification. Experiments on two cover song datasets confirm that the proposed salient chromagram improves the cover song identification accuracy.

  • A Note on Subgroup Security in Discrete Logarithm-Based Cryptography

    Tadanori TERUYA  

     
    PAPER

      Vol:
    E104-A No:1
      Page(s):
    104-120

    The membership check of a group is an important operation to implement discrete logarithm-based cryptography in practice securely. Since this check requires costly scalar multiplication or exponentiation operation, several efficient methods have been investigated. In the case of pairing-based cryptography, this is an extended research area of discrete logarithm-based cryptography, Barreto et al. (LATINCRYPT 2015) proposed a parameter choice called subgroup-secure elliptic curves. They also claimed that, in some schemes, if an elliptic curve is subgroup-secure, costly scalar multiplication or exponentiation operation can be omitted from the membership check of bilinear groups, which results in faster schemes than the original ones. They also noticed that some schemes would not maintain security with this omission. However, they did not show the explicit condition of what schemes become insecure with the omission. In this paper, we show a concrete example of insecurity in the sense of subgroup security to help developers understand what subgroup security is and what properties are preserved. In our conclusion, we recommend that the developers use the original membership check because it is a general and straightforward method to implement schemes securely. If the developers want to use the subgroup-secure elliptic curves and to omit the costly operation in a scheme for performance reasons, it is critical to carefully analyze again that correctness and security are preserved with the omission.

  • Fuzzy Output Support Vector Machine Based Incident Ticket Classification

    Libo YANG  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2020/10/14
      Vol:
    E104-D No:1
      Page(s):
    146-151

    Incident ticket classification plays an important role in the complex system maintenance. However, low classification accuracy will result in high maintenance costs. To solve this issue, this paper proposes a fuzzy output support vector machine (FOSVM) based incident ticket classification approach, which can be implemented in the context of both two-class SVMs and multi-class SVMs such as one-versus-one and one-versus-rest. Our purpose is to solve the unclassifiable regions of multi-class SVMs to output reliable and robust results by more fine-grained analysis. Experiments on both benchmark data sets and real-world ticket data demonstrate that our method has better performance than commonly used multi-class SVM and fuzzy SVM methods.

  • Performance Analysis of the Interval Algorithm for Random Number Generation in the Case of Markov Coin Tossing Open Access

    Yasutada OOHAMA  

     
    PAPER-Shannon Theory

      Vol:
    E103-A No:12
      Page(s):
    1325-1336

    In this paper we analyze the interval algorithm for random number generation proposed by Han and Hoshi in the case of Markov coin tossing. Using the expression of real numbers on the interval [0,1), we first establish an explicit representation of the interval algorithm with the representation of real numbers on the interval [0,1) based one number systems. Next, using the expression of the interval algorithm, we give a rigorous analysis of the interval algorithm. We discuss the difference between the expected number of the coin tosses in the interval algorithm and their upper bound derived by Han and Hoshi and show that it can be characterized explicitly with the established expression of the interval algorithm.

  • Fabrication and Strain Vector Characteristics of Multicore Fiber Based FBG

    Zhao SUN  Shunge DENG  Xin MA  Haimei LUO  Xinwan LI  

     
    PAPER

      Pubricized:
    2020/05/22
      Vol:
    E103-B No:11
      Page(s):
    1305-1309

    Through novel rotation writing method of Bragg grating in multicore fiber, its strain vector characteristics are analyzed. The relation between the rotation angle and the strain curvature sensitivity is obtained. Reconstruction of strain vector is verified.

  • Comparison of Optical Transport Technologies for Centralized Radio Access Network Using Optical Ground Wire Open Access

    Kensuke IKEDA  Christina LIM  Ampalavanapillai NIRMALATHAS  Chathurika RANAWEERA  

     
    PAPER

      Pubricized:
    2020/05/22
      Vol:
    E103-B No:11
      Page(s):
    1240-1248

    Communication networks for wide-scale distributed energy resources (DERs) including photovoltaics (PVs), wind, storage and battery systems and electric vehicles (EVs) will be indispensable in future power grids. In this paper, we compare optical fronthaul networks using existing optical ground wires (OPGWs) for centralized radio access network (C-RAN) architecture to realize cost effective wireless communication network expansion including low population area. We investigate the applicability of optical data transport technologies of physical layer split (PLS), analog radio-on-fiber (ARoF), and common public radio interface (CPRI). The deployment costs of them are comparatively analyzed. It was shown that physical layer split and analog radio-on-fiber with subcarrier multiplexing (SCM) result in lower cost than other technologies.

  • Ultra-Low Crosstalk Multi-Core Fiber with Standard 125-μm Cladding Diameter for 10,000km-Class Long-Haul Transmission Open Access

    Yuto SAGAE  Takashi MATSUI  Taiji SAKAMOTO  Kazuhide NAKAJIMA  

     
    INVITED PAPER

      Pubricized:
    2020/06/08
      Vol:
    E103-B No:11
      Page(s):
    1199-1205

    We propose an ultra-low inter-core crosstalk (XT) multi-core fiber (MCF) with standard 125-μm cladding. We show the fiber design and fabrication results of an MCF housing four cores with W-shaped index profile; it offers XT of less than -67dB/km over the whole C+L band. This enables us to realize 10,000-km transmission with negligible XT penalty. We also observe a low-loss of 0.17dB/km (average) at a wavelength of 1.55μm and other optical properties compatible with ITU-T G.654.B fiber. We also elucidate its good micro-bend resistance in terms of both the loss and XT to confirm its applicability to high-density optical fiber cables. Finally, we show that the fabricated MCF is feasible along with long-distance transmission by confirming that the XT noise performance corresponds to transmission distances of 10,000km or more.

  • Dual-Carrier 1-Tb/s Transmission Over Field-Deployed G.654.E Fiber Link Using Real-Time Transponder Open Access

    Fukutaro HAMAOKA  Takeo SASAI  Kohei SAITO  Takayuki KOBAYASHI  Asuka MATSUSHITA  Masanori NAKAMURA  Hiroki TANIGUCHI  Shoichiro KUWAHARA  Hiroki KAWAHARA  Takeshi SEKI  Josuke OZAKI  Yoshihiro OGISO  Hideki MAEDA  Yoshiaki KISAKA  Masahito TOMIZAWA  

     
    INVITED PAPER

      Pubricized:
    2020/05/29
      Vol:
    E103-B No:11
      Page(s):
    1183-1189

    We demonstrated 1-Tb/s-class transmissions of field-deployed large-core low-loss fiber links, which is compliant with ITU-T G.654.E, using our newly developed real-time transponder consisting of a state-of-the-art 16-nm complementary metal-oxide-semiconductor (CMOS) based digital signal processing application-specific integrated circuit (DSP-ASIC) and an indium phosphide (InP) based high-bandwidth coherent driver modulator (HB-CDM). In this field experiment, we have achieved record transmission distances of 1122km for net data-rate 1-Tb/s transmission with dual polarization-division multiplexed (PDM) 32 quadrature amplitude modulation (QAM) signals, and of 336.6 km for net data-rate 1.2-Tb/s transmission with dual PDM-64QAM signals. This is the first demonstration of applying hybrid erbium-doped fiber amplifier (EDFA) and backward-distributed Raman amplifier were applied to terrestrial G.654.E fiber links. We also confirmed the stability of signal performance over field fiber transmission in wavelength division multiplexed (WDM) condition. The Q-factor fluctuations respectively were only less than or equal to 0.052dB and 0.07dB for PDM-32QAM and PDM-64QAM signals within continuous measurements for 60 minutes.

  • Distributed Power Optimization for Cooperative Localization: A Hierarchical Game Approach

    Lu LU  Mingxing KE  Shiwei TIAN  Xiang TIAN  Tianwei LIU  Lang RUAN  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2020/04/21
      Vol:
    E103-B No:10
      Page(s):
    1101-1106

    To tackle the distributed power optimization problems in wireless sensor networks localization systems, we model the problem as a hierarchical game, i.e. a multi-leader multi-follower Stackelberg game. Existing researches focus on the power allocation of anchor nodes for ranging signals or the power management of agent nodes for cooperative localization, individually. However, the power optimizations for different nodes are indiscerptible due to the common objective of localization accuracy. So it is a new challenging task when the power allocation strategies are considered for anchor and agent nodes simultaneously. To cope with this problem, a hierarchical game is proposed where anchor nodes are modeled as leaders and agent nodes are modeled as followers. Then, we prove that games of leaders and followers are both potential games, which guarantees the Nash equilibrium (NE) of each game. Moreover, the existence of Stackelberg equilibrium (SE) is proved and achieved by the best response dynamics. Simulation results demonstrate that the proposed algorithm can have better localization accuracy compared with the decomposed algorithm and uniform strategy.

  • Real-Time Detection of Global Cyberthreat Based on Darknet by Estimating Anomalous Synchronization Using Graphical Lasso

    Chansu HAN  Jumpei SHIMAMURA  Takeshi TAKAHASHI  Daisuke INOUE  Jun'ichi TAKEUCHI  Koji NAKAO  

     
    PAPER-Information Network

      Pubricized:
    2020/06/25
      Vol:
    E103-D No:10
      Page(s):
    2113-2124

    With the rapid evolution and increase of cyberthreats in recent years, it is necessary to detect and understand it promptly and precisely to reduce the impact of cyberthreats. A darknet, which is an unused IP address space, has a high signal-to-noise ratio, so it is easier to understand the global tendency of malicious traffic in cyberspace than other observation networks. In this paper, we aim to capture global cyberthreats in real time. Since multiple hosts infected with similar malware tend to perform similar behavior, we propose a system that estimates a degree of synchronizations from the patterns of packet transmission time among the source hosts observed in unit time of the darknet and detects anomalies in real time. In our evaluation, we perform our proof-of-concept implementation of the proposed engine to demonstrate its feasibility and effectiveness, and we detect cyberthreats with an accuracy of 97.14%. This work is the first practical trial that detects cyberthreats from in-the-wild darknet traffic regardless of new types and variants in real time, and it quantitatively evaluates the result.

  • Assessment of Optical Node Architectures for Building Next Generation Large Bandwidth Networks Open Access

    Mungun-Erdene GANBOLD  Takuma YASUDA  Yojiro MORI  Hiroshi HASEGAWA  Fumikazu INUZUKA  Akira HIRANO  Ken-ichi SATO  

     
    PAPER-Network

      Pubricized:
    2019/12/20
      Vol:
    E103-B No:6
      Page(s):
    679-689

    We analyze the cost of networks consisting of optical cross-connect nodes with different architectures for realizing the next generation large bandwidth networks. The node architectures include wavelength granular and fiber granular optical routing cross-connects. The network cost, capital expenditure (CapEx), involves link cost and node cost, both of which are evaluated for different scale networks under various traffic volumes. Numerical experiments demonstrate that the subsystem modular architecture with wavelength granular routing yields the highest cost effectiveness over a wide range of parameter values.

  • Optimization Problems for Consecutive-k-out-of-n:G Systems

    Lei ZHOU  Hisashi YAMAMOTO  Taishin NAKAMURA  Xiao XIAO  

     
    PAPER-Reliability, Maintainability and Safety Analysis

      Vol:
    E103-A No:5
      Page(s):
    741-748

    A consecutive-k-out-of-n:G system consists of n components which are arranged in a line and the system works if and only if at least k consecutive components work. This paper discusses the optimization problems for a consecutive-k-out-of-n:G system. We first focus on the optimal number of components at the system design phase. Then, we focus on the optimal replacement time at the system operation phase by considering a preventive replacement, which the system is replaced at the planned time or the time of system failure which occurs first. The expected cost rates of two optimization problems are considered as objective functions to be minimized. Finally, we give study cases for the proposed optimization problems and evaluate the feasibility of the policies.

  • A True Random Number Generator Method Embedded in Wireless Communication Systems

    Toshinori SUZUKI  Masahiro KAMINAGA  

     
    PAPER-Cryptography and Information Security

      Vol:
    E103-A No:4
      Page(s):
    686-694

    To increase the number of wireless devices such as mobile or IoT terminals, cryptosystems are essential for secure communications. In this regard, random number generation is crucial because the appropriate function of cryptosystems relies on it to work properly. This paper proposes a true random number generator (TRNG) method capable of working in wireless communication systems. By embedding a TRNG in such systems, no additional analog circuits are required and working conditions can be limited as long as wireless communication systems are functioning properly, making TRNG method cost-effective. We also present some theoretical background and considerations. We next conduct experimental verification, which strongly supports the viability of the proposed method.

  • Effective Area Enlarged Photonic Crystal Fiber with Quasi-Uniform Air-Hole Structure for High Power Transmission

    Takashi MATSUI  Kyozo TSUJIKAWA  Takehisa OKUDA  Nobutomo HANZAWA  Yuto SAGAE  Kazuhide NAKAJIMA  Yasuyuki FUJIYA  Kazuyuki SHIRAKI  

     
    PAPER-Optical Fiber for Communications

      Pubricized:
    2019/10/15
      Vol:
    E103-B No:4
      Page(s):
    415-421

    We investigate the potential of photonic crystal fiber (PCF) to realize high quality and high-power transmission. We utilize the PCF with a quasi-uniform air-hole structure, and numerically clarify that the quasi-uniform PCF can realize the effective area (Aeff) of about 500µm2 with bending loss comparable with that of a conventional single-mode fiber for telecom use by considering the quasi single-mode transmission. We then apply the quasi-uniform PCF to kW-class high-power beam delivery for the single-mode laser processing. The cross-sectional design of the PCF with the high-power delivery potential of more than 300kW·m is numerically and experimentally revealed. A 10kW single-mode beam at 1070nm is successfully delivered over a 30m-long optical fiber cable containing a fabricated PCF with single-mode class beam quality of M2 =1.7 for the first time.

  • An Efficient Learning Algorithm for Regular Pattern Languages Using One Positive Example and a Linear Number of Membership Queries

    Satoshi MATSUMOTO  Tomoyuki UCHIDA  Takayoshi SHOUDAI  Yusuke SUZUKI  Tetsuhiro MIYAHARA  

     
    PAPER

      Pubricized:
    2019/12/23
      Vol:
    E103-D No:3
      Page(s):
    526-539

    A regular pattern is a string consisting of constant symbols and distinct variable symbols. The language of a regular pattern is the set of all constant strings obtained by replacing all variable symbols in the regular pattern with non-empty strings. The present paper deals with the learning problem of languages of regular patterns within Angluin's query learning model, which is an established mathematical model of learning via queries in computational learning theory. The class of languages of regular patterns was known to be identifiable from one positive example using a polynomial number of membership queries, in the query learning model. In present paper, we show that the class of languages of regular patterns is identifiable from one positive example using a linear number of membership queries, with respect to the length of the positive example.

  • BER due to Intersymbol Interference in Maximal-Ratio Combining Reception Analyzed Based on Equivalent Transmission-Path Model

    Yoshio KARASAWA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2019/09/06
      Vol:
    E103-B No:3
      Page(s):
    229-239

    The equivalent transmission-path model is a propagation-oriented channel model for predicting the bit error rate due to intersymbol interference in single-input single-output systems. We extend this model to develop a new calculation scheme for maximal-ratio combining diversity reception in single-input multiple-output configurations. A key part of the study is to derive a general formula expressing the joint probability density function of the amplitude ratio and phase difference of the two-path model. In this derivation, we mainly take a theoretical approach with the aid of Monte Carlo simulation. Then, very high-accuracy estimation of the average bit error rate due to intersymbol interference (ISI) for CQPSK calculated based on the model is confirmed by computer simulation. Finally, we propose a very simple calculation formula for the prediction of the BER due to ISI that is commonly applicable to various modulation/demodulation schemes, such as CQPSK, DQPSK, 16QAM, and CBPSK in maximal-ratio combining diversity reception.

  • DFE Error Propagation and FEC Interleaving for 400GbE PAM4 Electrical Lane Open Access

    Yongzheng ZHAN  Qingsheng HU  Yinhang ZHANG  

     
    PAPER-Integrated Electronics

      Pubricized:
    2019/08/05
      Vol:
    E103-C No:2
      Page(s):
    48-58

    This paper analyzes the effect of error propagation of decision feedback equalizer (DFE) for PAM4 based 400Gb/s Ethernet. First, an analytic model for the error propagation is proposed to estimate the probability of different burst error length due to error propagation for PAM4 link system with multi-tap TX FFE (Feed Forward Equalizer) + RX DFE architecture. After calculating the symbol error rate (SER) and bit error rate (BER) based on the probability model, the theoretical analysis about the impact of different equalizer configurations on BER is compared with the simulation results, and then BER performance with FEC (Forward Error Correction) is analyzed to evaluate the effect of DFE error propagation on PAM4 link. Finally, two FEC interleaving schemes, symbol and bit interleaving, are employed in order to reduce BER further and then the theoretical analysis and the simulation result of their performance improvement are also evaluated. Simulation results show that at most 0.52dB interleaving gain can be achieved compared with non-interleaving scheme just at a little cost in storing memory and latency. And between the two interleaving methods, symbol interleaving performs better compared with the other one from the view of tradeoff between the interleaving gain and the cost and can be applied for 400Gb/s Ethernet.

  • New Pseudo-Random Number Generator for EPC Gen2

    Hiroshi NOMAGUCHI  Chunhua SU  Atsuko MIYAJI  

     
    PAPER-Cryptographic Techniques

      Pubricized:
    2019/11/14
      Vol:
    E103-D No:2
      Page(s):
    292-298

    RFID enable applications are ubiquitous in our society, especially become more and more important as IoT management rises. Meanwhile, the concern of security and privacy of RFID is also increasing. The pseudorandom number generator is one of the core primitives to implement RFID security. Therefore, it is necessary to design and implement a secure and robust pseudo-random number generator (PRNG) for current RFID tag. In this paper, we study the security of light-weight PRNGs for EPC Gen2 RFID tag which is an EPC Global standard. For this reason, we have analyzed and improved the existing research at IEEE TrustCom 2017 and proposed a model using external random numbers. However, because the previous model uses external random numbers, the speed has a problem depending on the generation speed of external random numbers. In order to solve this problem, we developed a pseudorandom number generator that does not use external random numbers. This model consists of LFSR, NLFSR and SLFSR. Safety is achieved by using nonlinear processing such as multiplication and logical multiplication on the Galois field. The cycle achieves a cycle longer than the key length by effectively combining a plurality of LFSR and the like. We show that our proposal PRNG has good randomness and passed the NIST randomness test. We also shows that it is resistant to identification attacks and GD attacks.

  • Efficient Methods to Generate Constant SNs with Considering Trade-Off between Error and Overhead and Its Evaluation

    Yudai SAKAMOTO  Shigeru YAMASHITA  

     
    PAPER-Computer System

      Pubricized:
    2019/11/12
      Vol:
    E103-D No:2
      Page(s):
    321-328

    In Stochastic Computing (SC), we need to generate many stochastic numbers (SNs). If we generate one SN conventionally, we need a Stochastic Number Generator (SNG) which consists of a linear-feedback shift register (LFSR) and a comparator. When we calculate an arithmetic function by SC, we need to generate many SNs whose values are equal to constant values used in the arithmetic function. As a consequence, the hardware overhead becomes huge. Accordingly, there has been proposed a method called GMCS (Generating Many Constant SNs from Few SNs) to generate many constant SNs with low hardware overhead. However, if we use GMCS simply, generated constant SNs are correlated highly with each other. This would be a serious problem because the high correlation of SNs make a large error in computation. Therefore, in this paper, we propose efficient methods to generate constant SNs with reasonably low hardware overhead without increasing errors. To reduce the correlations of constant SNs which are generated by GMCS, we use Register based Re-arrangement circuit using a Random bit stream duplicator (RRRD). RRRDs have few influences on the hardware overhead because an RRRD consists of three multiplexers (MUXs) and two 1-bit FFs. We also use a technique to share random number generators with several SNGs to reduce the hardware overhead. We provide some experimental results by which we can confirm that our proposed methods are in general very useful to reduce the hardware overhead for generating constant SNs without increasing errors.

  • Topological Stack-Queue Mixed Layouts of Graphs

    Miki MIYAUCHI  

     
    PAPER-Graphs and Networks

      Vol:
    E103-A No:2
      Page(s):
    510-522

    One goal in stack-queue mixed layouts of a graph subdivision is to obtain a layout with minimum number of subdivision vertices per edge when the number of stacks and queues are given. Dujmović and Wood showed that for every integer s, q>0, every graph G has an s-stack q-queue subdivision layout with 4⌈log(s+q)q sn(G)⌉ (resp. 2+4⌈log(s+q)q qn(G)⌉) division vertices per edge, where sn(G) (resp. qn(G)) is the stack number (resp. queue number) of G. This paper improves these results by showing that for every integer s, q>0, every graph G has an s-stack q-queue subdivision layout with at most 2⌈logs+q-1sn(G)⌉ (resp. at most 2⌈logs+q-1qn(G)⌉ +4) division vertices per edge. That is, this paper improves previous results more, for graphs with larger stack number sn(G) or queue number qn(G) than given integers s and q. Also, the larger the given integer s is, the more this paper improves previous results.

81-100hit(1214hit)