1-12hit |
Kanshiro KASHIKI Tadayuki FUKUHARA Akira YAMAGUCHI Toshinori SUZUKI
From the viewpoint of service availability, which is an important evaluation factor in communication quality, we analytically study the performance improvement of heterogeneous radio networks that cooperatively select one system from among multiple communication systems. It is supposed herein that the heterogeneous network selects one system with the larger throughput or with the smaller time delay. To this end, we firstly derive analytical methods using the probability density function of the performance characteristics of the communication systems consisting of the heterogeneous radio network. The analytical method described here is comparatively general and enables the handling of cases where complete cooperation can and cannot be achieved in the heterogeneous network. As for the performance characteristics, we conduct an experiment using the wireless LAN to establish the probability distribution models of the throughput and time delay in the communication system. Using the analytical method and the experimental model obtained, we calculate the performance improvement by cooperative operation in the heterogeneous network. The equational expression to obtain the theoretical performance improvement limit is also investigated through the analytical equations.
Toshinori SUZUKI Yoshio TAKEUCHI Sumaru NIIDA Fumio WATANABE
This paper reports the field test performance of a base station (BS) equipped with a linear parallel multi-stage interference canceller for uplink of wideband CDMA in a suburban area. The field test was performed with one desired mobile station (MS) moving around the BS, and three fixed interfering MSs having a target SIR 11 dB higher than that of the desired MS. The field test clearly demonstrates that using interference cancellation with a proper suppression factor (or weighting factor), can reduce the transmission power of the desired MS by around 6 dB. This performance was also compared with calculated data and the interference canceller was verified to function as theoretically expected. The receive power capture ratio was estimated at around 96%. This paper therefore establishes that interference cancellation performance of CDMA systems in the field can be found by estimating the receive power capture ratio and the theoretical results of interference cancellation.
Noriaki MIYAZAKI Toshinori SUZUKI Shuichi MATSUMOTO
In order to improve the forward link capacity of cdma2000 HRPD (High Rate Packet Data) or CDMA2000 1xEV-DO, it is significant to overcome multi-path interference. This paper focuses on FDE (Frequency Domain Equalization) with MMSE (Minimum Mean Square Error) criterion. On top of that, backward compatibility with HRPD should be maintained, in other words common channels such as the pilot channel should not be changed. Thus, the PN (Pseudo Noise) spread pilot block without CP (Cyclic Prefix) signals has to be dealt with for FDE. However, this will cause the conventional channel estimation accuracy to deteriorate. In order to improve the estimation accuracy of the conventional method, this paper presents a MRC (Maximal Ratio Combining) spectrum estimator, IPI (Inter-Path Interference) canceller, and path searcher. The results obtained from computer simulations reveal that the proposed method can improve the PER (Packet Error Rate) performance significantly. If compared with Rake combiner and TDE (Time Domain Equalization) with NLMS (Normalized Least Mean Square) scheme, the maximum data rates at a fixed PER of 1% can be increased by 5 to 8 times and 1.25 to 2.67 times, respectively.
Chen ZHENG Noriaki MIYAZAKI Toshinori SUZUKI
Effective and simply realizable rate compatible low-density parity-check (LDPC) codes are proposed. A parity check matrix is constructed with the progressively increased column weights (PICW) order and adopted to achieve a punctured LDPC coding scheme for a wide range of the code rates of the rate compatible systems. Using the proposed rate compatible punctured LDPC codes, low complex adaptive communication systems, such as wireless communication systems, can be achieved with the reliable transmissions.
Noriaki MIYAZAKI Toshinori SUZUKI
This paper focuses on the MC-CDMA (Multi Carrier-Code Division Multiple Access) with the MMSEC (Minimum Mean Square Error Combining) receiver, which is a good candidate of a transmission scheme for beyond 3G systems. This paper evaluates the forward link capacity using the MMSEC receiver in the MC-CDMA cellular system, which employs TDM (Time Division Multiplex) transmission for multiple users. In this paper, the PDF (Probability Distribution Function) of the SINR (Symbol to Interference plus Noise energy Ratio) after MMSEC under multi-cell environment are calculated with the various number of the code division multiplexes. Based on the PDF, the numerical relation can be derived between the peak rate of the adaptive transmission and the average transmission rate per sector.
Toshinori SUZUKI Yoshio TAKEUCHI
In this paper, we propose an interference canceller for asynchronous DS-CDMA. The principle is based on parallel cancellation using soft decision(PCSD), however, we propose to add an operation to suppress the strength of interfering signals replica on PCSD. We show here that this operation plays a very important theoretical role in PCSD, and that the performance of our proposed scheme approaches that of a perfect decorrelating detector under certain conditions. With this theoretical background in mind, we named this scheme the "Near-Decorrelating Multistage Detector"(NDMD). To demonstrate NDMD performance, we performed two kinds of computer simulations. In the first kind of simulation, simple conditions are assumed in order to evaluate basic cancelling performance. In the other kind of simulation, essential techniques for CDMA cellular systems such as FEC, transmission power control(TPC), and base band filtering were implemented while taking into account NDMD as applied to such systems. These simulations numerically demonstrate that NDMD is very efficient in cancelling out interference and that it improves asynchronous DS-CDMA performance.
Yasuyuki HATAKAWA Noriaki MIYAZAKI Toshinori SUZUKI
This paper proposes Twin Turbo (T2) MIMO-OFDM (Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing). The advanced iterative decoder, called the T2 decoder, decreases the transmission error rate compared to conventional turbo decoders because it uses the correlation information among the bits mapped on an identical symbol of multi-level modulation and updates the channel reliability. When T2 is applied to a MIMO-OFDM, the required symbol energy to noise power density ratio (Es/N0) can be reduced more effectively than when T2 is applied to SISO (Single Input Single Output). This is because T2 can use the correlation among the bits not only mapped on an identical symbol but also transmitted from different antennas. Moreover, T2 achieves good performance in a correlated MIMO channel because the average minimum squared Euclidean distances between symbol replica candidates consisting of signals transmitted from multiple transmitter antennas are reduced. Computer simulations verify that the required Es/N0 of T2 MIMO-OFDM using 16QAM is 1.9 dB lower than that of a conventional turbo decoder when the correlation coefficients of transmitter and receiver antennas are 0.8. A computational complexity analysis clarifies the relation between the increase in computational complexity and the reduction in the required Es/N0.
Toshinori SUZUKI Masahiro KAMINAGA
To increase the number of wireless devices such as mobile or IoT terminals, cryptosystems are essential for secure communications. In this regard, random number generation is crucial because the appropriate function of cryptosystems relies on it to work properly. This paper proposes a true random number generator (TRNG) method capable of working in wireless communication systems. By embedding a TRNG in such systems, no additional analog circuits are required and working conditions can be limited as long as wireless communication systems are functioning properly, making TRNG method cost-effective. We also present some theoretical background and considerations. We next conduct experimental verification, which strongly supports the viability of the proposed method.
Masato FURUDATE Hiroyasu ISHIKAWA Toshinori SUZUKI
In the Multi Carrier (MC)-CDMA system, the frequency diversity gain is obtained by its being spread in the frequency domain. The frequency interleaving technique can improve the frequency diversity gain. In this paper, the bit error rate (BER) performance in the MC-CDMA system which adopts the frequency interleaving scheme in the frequency selective fading channel is evaluated by computer simulation. In this simulation, orthogonal restoration combining (ORC) and minimum mean square error combining (MMSEC) are considered as frequency equalization combining techniques. This paper shows that BER performance with the frequency interleaver is better than without it in various environments.
Hideki YOSHIKAWA Masahiro KAMINAGA Arimitsu SHIKODA Toshinori SUZUKI
A method of round addition attack on substitution-permutation network (SPN) block ciphers using differential fault analysis (DFA) is presented. For the 128-bit advanced encryption standard (AES), we show that secret keys can be extracted using one correct ciphertext and two faulty ciphertexts. Furthermore, we evaluate the success rate of a round addition DFA attack, experimentally. The proposed method can also be applied to lightweight SPN block cipher such as KLEIN and LED.
Noriaki MIYAZAKI Yasuyuki HATAKAWA Toshinori SUZUKI
Aiming at actual evaluation of IMT-Advanced system performance using field tests, this paper develops an IMT-Advanced testbed system with a transmission bandwidth of 100 MHz. Taking into account recent advances in research and development of an IMT-Advanced system, orthogonal frequency division multiplexing (OFDM) with multiple-input multiple-output (MIMO) are also promising technologies in IMT-Advanced. In addition, in order to meet the requirements for IMT-Advanced, the system seems to have a bandwidth of about 100 MHz with the aid of MIMO transmission. The developed system is based on the above more reliable prediction compared with previous studies, and the goals of this development are to provide a more realistic transmission performance, judgment criteria for operators introducing new air interfaces, and to explore new applications. This paper also presents the experimental results of rotational OFDM (R-OFDM) and twin turbo (T2) decoder implemented in the testbed and demonstrates that our proposals are better than the conventional schemes in actual radio transmission. Both physical layer technologies have been proposed by the authors, however, the previous works are only predicated on computer simulation. In this paper, the proposals are experimentally evaluated by distorting the transmitted signal on radio waves with a fading simulator and additional noise generator. When the packet error rate performance is measured, the measurement results are verified to be in good agreement with the simulation results. The experimental results also demonstrate that the R-OFDM can reduce the required carrier to the interference power ratio (CIR) of OFDM by about 1.1 dB in single-input single output (SISO) multi-path fading channel. In addition, it becomes clear that the T2 decoder is better than the turbo decoder in error correction, and the required CIR reduction achieves about 0.8 dB in SISO AWGN channel. The throughput performances are also measured with different modulation and coding conditions, and the measured forward throughput in the SISO AWGN channel achieves up to 373.6 Mbps. In addition, by use of 22 MIMO transmission, the measurements results substantiate that throughput of 512.7 Mbps can be realized even in the multi-path fading condition.
Hideki YOSHIKAWA Masahiro KAMINAGA Arimitsu SHIKODA Toshinori SUZUKI
We present a round addition differential fault analysis (DFA) for some lightweight 80-bit block ciphers. It is shown that only one correct ciphertext and two faulty ciphertexts are required to reconstruct secret keys in 80-bit Piccolo and TWINE, and the reconstructions are easier than 128-bit CLEFIA.