In order to improve the forward link capacity of cdma2000 HRPD (High Rate Packet Data) or CDMA2000 1xEV-DO, it is significant to overcome multi-path interference. This paper focuses on FDE (Frequency Domain Equalization) with MMSE (Minimum Mean Square Error) criterion. On top of that, backward compatibility with HRPD should be maintained, in other words common channels such as the pilot channel should not be changed. Thus, the PN (Pseudo Noise) spread pilot block without CP (Cyclic Prefix) signals has to be dealt with for FDE. However, this will cause the conventional channel estimation accuracy to deteriorate. In order to improve the estimation accuracy of the conventional method, this paper presents a MRC (Maximal Ratio Combining) spectrum estimator, IPI (Inter-Path Interference) canceller, and path searcher. The results obtained from computer simulations reveal that the proposed method can improve the PER (Packet Error Rate) performance significantly. If compared with Rake combiner and TDE (Time Domain Equalization) with NLMS (Normalized Least Mean Square) scheme, the maximum data rates at a fixed PER of 1% can be increased by 5 to 8 times and 1.25 to 2.67 times, respectively.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Noriaki MIYAZAKI, Toshinori SUZUKI, Shuichi MATSUMOTO, "Accurate Channel Estimation Method for Frequency Domain Equalization on cdma2000 High Rate Packet Data System" in IEICE TRANSACTIONS on Fundamentals,
vol. E89-A, no. 7, pp. 2063-2071, July 2006, doi: 10.1093/ietfec/e89-a.7.2063.
Abstract: In order to improve the forward link capacity of cdma2000 HRPD (High Rate Packet Data) or CDMA2000 1xEV-DO, it is significant to overcome multi-path interference. This paper focuses on FDE (Frequency Domain Equalization) with MMSE (Minimum Mean Square Error) criterion. On top of that, backward compatibility with HRPD should be maintained, in other words common channels such as the pilot channel should not be changed. Thus, the PN (Pseudo Noise) spread pilot block without CP (Cyclic Prefix) signals has to be dealt with for FDE. However, this will cause the conventional channel estimation accuracy to deteriorate. In order to improve the estimation accuracy of the conventional method, this paper presents a MRC (Maximal Ratio Combining) spectrum estimator, IPI (Inter-Path Interference) canceller, and path searcher. The results obtained from computer simulations reveal that the proposed method can improve the PER (Packet Error Rate) performance significantly. If compared with Rake combiner and TDE (Time Domain Equalization) with NLMS (Normalized Least Mean Square) scheme, the maximum data rates at a fixed PER of 1% can be increased by 5 to 8 times and 1.25 to 2.67 times, respectively.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1093/ietfec/e89-a.7.2063/_p
Copy
@ARTICLE{e89-a_7_2063,
author={Noriaki MIYAZAKI, Toshinori SUZUKI, Shuichi MATSUMOTO, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Accurate Channel Estimation Method for Frequency Domain Equalization on cdma2000 High Rate Packet Data System},
year={2006},
volume={E89-A},
number={7},
pages={2063-2071},
abstract={In order to improve the forward link capacity of cdma2000 HRPD (High Rate Packet Data) or CDMA2000 1xEV-DO, it is significant to overcome multi-path interference. This paper focuses on FDE (Frequency Domain Equalization) with MMSE (Minimum Mean Square Error) criterion. On top of that, backward compatibility with HRPD should be maintained, in other words common channels such as the pilot channel should not be changed. Thus, the PN (Pseudo Noise) spread pilot block without CP (Cyclic Prefix) signals has to be dealt with for FDE. However, this will cause the conventional channel estimation accuracy to deteriorate. In order to improve the estimation accuracy of the conventional method, this paper presents a MRC (Maximal Ratio Combining) spectrum estimator, IPI (Inter-Path Interference) canceller, and path searcher. The results obtained from computer simulations reveal that the proposed method can improve the PER (Packet Error Rate) performance significantly. If compared with Rake combiner and TDE (Time Domain Equalization) with NLMS (Normalized Least Mean Square) scheme, the maximum data rates at a fixed PER of 1% can be increased by 5 to 8 times and 1.25 to 2.67 times, respectively.},
keywords={},
doi={10.1093/ietfec/e89-a.7.2063},
ISSN={1745-1337},
month={July},}
Copy
TY - JOUR
TI - Accurate Channel Estimation Method for Frequency Domain Equalization on cdma2000 High Rate Packet Data System
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 2063
EP - 2071
AU - Noriaki MIYAZAKI
AU - Toshinori SUZUKI
AU - Shuichi MATSUMOTO
PY - 2006
DO - 10.1093/ietfec/e89-a.7.2063
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E89-A
IS - 7
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - July 2006
AB - In order to improve the forward link capacity of cdma2000 HRPD (High Rate Packet Data) or CDMA2000 1xEV-DO, it is significant to overcome multi-path interference. This paper focuses on FDE (Frequency Domain Equalization) with MMSE (Minimum Mean Square Error) criterion. On top of that, backward compatibility with HRPD should be maintained, in other words common channels such as the pilot channel should not be changed. Thus, the PN (Pseudo Noise) spread pilot block without CP (Cyclic Prefix) signals has to be dealt with for FDE. However, this will cause the conventional channel estimation accuracy to deteriorate. In order to improve the estimation accuracy of the conventional method, this paper presents a MRC (Maximal Ratio Combining) spectrum estimator, IPI (Inter-Path Interference) canceller, and path searcher. The results obtained from computer simulations reveal that the proposed method can improve the PER (Packet Error Rate) performance significantly. If compared with Rake combiner and TDE (Time Domain Equalization) with NLMS (Normalized Least Mean Square) scheme, the maximum data rates at a fixed PER of 1% can be increased by 5 to 8 times and 1.25 to 2.67 times, respectively.
ER -