The search functionality is under construction.

Keyword Search Result

[Keyword] MMSE(137hit)

1-20hit(137hit)

  • PSOR-Jacobi Algorithm for Accelerated MMSE MIMO Detection

    Asahi MIZUKOSHI  Ayano NAKAI-KASAI  Tadashi WADAYAMA  

     
    PAPER-Communication Theory and Systems

      Pubricized:
    2023/08/04
      Vol:
    E107-A No:3
      Page(s):
    486-492

    This paper proposes the periodical successive over-relaxation (PSOR)-Jacobi algorithm for minimum mean squared error (MMSE) detection of multiple-input multiple-output (MIMO) signals. The proposed algorithm has the advantages of two conventional methods. One is the Jacobi method, which is an iterative method for solving linear equations and is suitable for parallel implementation. The Jacobi method is thus a promising candidate for high-speed simultaneous linear equation solvers for the MMSE detector. The other is the Chebyshev PSOR method, which has recently been shown to accelerate the convergence speed of linear fixed-point iterations. We compare the convergence performance of the PSOR-Jacobi algorithm with that of conventional algorithms via computer simulation. The results show that the PSOR-Jacobi algorithm achieves faster convergence without increasing computational complexity, and higher detection performance for a fixed number of iterations. This paper also proposes an efficient computation method of inverse matrices using the PSOR-Jacobi algorithm. The results of computer simulation show that the PSOR-Jacobi algorithm also accelerates the computation of inverse matrix.

  • An Efficient Signal Detection Method Based on Enhanced Quasi-Newton Iteration for Massive MIMO Systems

    Yifan GUO  Zhijun WANG  Wu GUAN  Liping LIANG  Xin QIU  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2023/07/21
      Vol:
    E107-A No:1
      Page(s):
    169-173

    This letter provides an efficient massive multiple-input multiple-output (MIMO) detector based on quasi-newton methods to speed up the convergence performance under realistic scenarios, such as high user load and spatially correlated channels. The proposed method leverages the information of the Hessian matrix by merging Barzilai-Borwein method and Limited Memory-BFGS method. In addition, an efficient initial solution based on constellation mapping is proposed. The simulation results demonstrate that the proposed method diminishes performance loss to 0.7dB at the bit-error-rate of 10-2 at 128×32 antenna configuration with low complexity, which surpasses the state-of-the-art (SOTA) algorithms.

  • Overloaded MIMO Bi-Directional Communication with Physical Layer Network Coding in Heterogeneous Multihop Networks Open Access

    Satoshi DENNO  Tomoya TANIKAWA  Yafei HOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/07/24
      Vol:
    E106-B No:11
      Page(s):
    1228-1236

    This paper proposes overloaded multiple input multiple output (MIMO) bi-directional communication with physical layer network coding (PLNC) to enhance the transmission speed in heterogeneous wireless multihop networks where the number of antennas on the relay is less than that on the terminals. The proposed overloaded MIMO communication system applies precoding and relay filtering to reduce computational complexity in spite of the transmission speed. An eigenvector-based filter is proposed for the relay filter. Furthermore, we propose a technique to select the best filter among candidates eigenvector-based filters. The performance of the proposed overloaded MIMO bi-directional communication is evaluated by computer simulation in a heterogeneous wireless 2-hop network. The proposed filter selection technique attains a gain of about 1.5dB at the BER of 10-5 in a 2-hop network where 2 antennas and 4 antennas are placed on the relay and the terminal, respectively. This paper shows that 6 stream spatial multiplexing is made possible in the system with 2 antennas on the relay.

  • Uplink Postcoding in User-Cluster-Centric Cell-Free Massive MIMO

    Ryo TAKAHASHI  Hidenori MATSUO  Sijie XIA  Qiang CHEN  Fumiyuki ADACHI  

     
    PAPER

      Pubricized:
    2023/03/08
      Vol:
    E106-B No:9
      Page(s):
    748-757

    Cell-free massive MIMO (CF-mMIMO), which cooperatively utilizes a large number of antennas deployed over a communication area, has been attracting great attention as an important technology for realizing 5G-advanced and 6G systems. Recently, to ensure system scalability and mitigate inter-user interference in CF-mMIMO, a user-centric (UC) approach was investigated. In this UC approach, user-centric antenna-sets are formed by selecting appropriate antennas for each user, and postcoding is applied to reduce the strong interference from users whose antenna-sets overlap. However, in very high user density environments, since the number of interfering users increases due to increased overlapping of antenna-sets, the achievable link capacity may degrade. In this paper, we propose a user-cluster-centric (UCC) approach, which groups neighborhood users into a user-cluster and associates the predetermined number of antennas to this user-cluster for spatial multiplexing. We derive the uplink postcoding weights and explain the effectiveness of the proposed UCC approach in terms of the computational complexity of the weight computation. We also compare the uplink user capacities achievable with UC and UCC approaches by computer simulation and clarify situations where the UCC approach is effective. Furthermore, we discuss the impact of the number of interfering users considered in the zero-forcing and minimum mean square error postcoding weight computation on the user capacity.

  • Asynchronous Periodic Interference Signals Cancellation in Frequency Domain

    Satoshi DENNO  Yafei HOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/03/24
      Vol:
    E105-B No:9
      Page(s):
    1087-1096

    This paper proposes a novel interference cancellation technique that prevents radio receivers from degrading due to periodic interference signals caused by electromagnetic waves emitted from high power circuits. The proposed technique cancels periodic interference signals in the frequency domain, even if the periodic interference signals drift in the time domain. We propose a drift estimation based on a super resolution technique such as ESPRIT. Moreover, we propose a sequential drift estimation to enhance the drift estimation performance. The proposed technique employs a linear filter based on the minimum mean square error criterion with assistance of the estimated drifts for the interference cancellation. The performance of the proposed technique is confirmed by computer simulation. The proposed technique achieves a gain of more than 40dB at the higher frequency part in the band. The proposed canceler achieves such superior performance, if the parameter sets are carefully selected. The proposed sequential drift estimation relaxes the parameter constraints, and enables the proposed cancellation to achieve the performance upper bound.

  • Two-Stage Belief Propagation Detection with MMSE Pre-Cancellation for Overloaded MIMO

    Risa SHIOI  Takashi IMAMURA  Yukitoshi SANADA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2021/10/15
      Vol:
    E105-B No:3
      Page(s):
    309-317

    In this paper, two-stage BP detection is proposed for overloaded MIMO. The proposal combines BP with the MMSE pre-cancellation algorithm followed by normal BP detection. In overloaded MIMO systems, the loops in a factor graph degrade the demodulation performance of BP detection. MMSE pre-cancellation reduces the number of connections or coefficient values in the factor graph which improves the convergence characteristics of posteriori probabilities. Numerical results obtained through computer simulation show that the BERs of the proposed two-stage BP detection outperforms the conventional BP with MMSE pre-cancellation in a low bit energy range when the MMSE block size is four and the number of MMSE blocks is one. When the pre-cancellation is applied for complexity reduction, the proposed scheme reduces multiplication operations and summation operations by the same factor of 0.7 though the amount of the performance improvement to the conventional scheme is limited.

  • Adaptive Beamforming Switch in Realistic Massive MIMO System with Prototype

    Jiying XU  Yongmei SUN  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2021/07/26
      Vol:
    E105-A No:1
      Page(s):
    72-76

    This letter proposes an adaptive beamforming switch algorithm for realistic massive multiple-input multiple-output (MIMO) systems through prototypes. It is analyzed and identified that a rigid single-mode beamforming regime is hard to maintain superior performance all the time due to no adaption to the inevitable channel variation in practice. In order to cope with this practical issue, the proposed systematic beamforming mechanism is investigated to enable dynamic selection between minimum mean-squared error and grid-of-beams beamforming algorithms, which improves system downlink performance, including throughput and block error rate. The significant performance benefits and realistic feasibility have been validated through the field tests in live networks and theoretical analyses. Meanwhile, the adaptive beamforming switch algorithm is applicable to both fourth and fifth generation time-division duplexing cellular communication system using massive-MIMO technology.

  • Design and VLSI Implementation of a Sorted MMSE QR Decomposition for 4×4 MIMO Detectors

    Lu SUN  Bin WU  Tianchun YE  

     
    LETTER-VLSI Design Technology and CAD

      Pubricized:
    2020/10/12
      Vol:
    E104-A No:4
      Page(s):
    762-767

    In this letter, a low latency, high throughput and hardware efficient sorted MMSE QR decomposition (MMSE-SQRD) for multiple-input multiple-output (MIMO) systems is presented. In contrast to the method of extending the complex matrix to real model and thereafter applying real-valued QR decomposition (QRD), we develop a highly parallel decomposition scheme based on coordinate rotation digital computer (CORDIC) which performs the QRD in complex domain directly and then converting the complex result to its real counterpart. The proposed scheme can greatly improve the processing parallelism and curtail the nullification and sorting procedures. Besides, we also design the corresponding pipelined hardware architecture of the MMSE-SQRD based on highly parallel Givens rotation structure with CORDIC algorithm for 4×4 MIMO detectors. The proposed MMSE-SQRD is implemented in SMIC 55nm CMOS technology achieving up to 50M QRD/s throughput and a latency of 59 clock cycles with only 218 kilo-gates (KG). Compared to the previous works, the proposed design achieves the highest normalized throughput efficiency and lowest processing latency.

  • Low Complexity Overloaded MIMO Detection Based on Belief Propagation with MMSE Pre-Cancellation

    Takashi IMAMURA  Yukitoshi SANADA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/09/09
      Vol:
    E104-B No:3
      Page(s):
    312-319

    In this paper, the application of minimum mean square error (MMSE) pre-cancellation prior to belief propagation (BP) is proposed as a detection scheme for overloaded multiple-input multiple-output (MIMO) systems. In overloaded MIMO systems, the loops in the factor graph degrade the demodulation performance of BP. Therefore, the proposed scheme applies MMSE pre-cancellation prior to BP and reduces the number of loops. Furthermore, it is applied to the selected transmit and receive nodes so that the condition number of an inverse matrix in the MMSE weight matrix is minimized to suppress the residual interference and the noise after MMSE pre-cancellation. Numerical results obtained through computer simulation show that the proposed scheme achieves better bit error rate (BER) performance than BP without MMSE pre-cancellation. The proposed scheme improves the BER performance by 2.9-5.6dB at a BER of 5.0×10-3 compared with conventional BP. Numerical results also show that MMSE pre-cancellation reduces the complexity of BP by a factor of 896 in terms of the number of multiplication operations.

  • Diversity Reception and Interference Cancellation for Receivers Using Antenna with Periodically Variable Antenna Pattern Open Access

    Nobuhide KINJO  Masato SAITO  

     
    PAPER

      Vol:
    E104-A No:1
      Page(s):
    253-262

    In this paper, we propose a model of a diversity receiver which uses an antenna whose antenna pattern can periodically change. We also propose a minimum mean square error (MMSE) based interference cancellation method of the receiver which, in principle, can suffer from the interference in neighboring frequency bands. Since the antenna pattern changes according to the sum of sinusoidal waveforms with different frequencies, the received signals are received at the carrier frequency and the frequencies shifted from the carrier frequency by the frequency of the sinusoidal waveforms. The proposed diversity scheme combines the components in the frequency domain to maximize the signal-to-noise power ratio (SNR) and to maximize the diversity gain. We confirm that the bit error rate (BER) of the proposed receiver can be improved by increase in the number of arrival paths resulting in obtaining path diversity gain. We also confirm that the proposed MMSE based interference canceller works well when interference signals exist and achieves better BER performances than the conventional diversity receiver with maximum ratio combining.

  • Selectively Iterative Detection Scheme Based on the Residual Power in MIMO-OFDM

    Jong-Kwang KIM  Seung-Jin CHOI  Young-Hwan YOU  Hyoung-Kyu SONG  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/06/22
      Vol:
    E101-B No:12
      Page(s):
    2445-2452

    Multiple input multiple output with orthogonal frequency division multiplexing (MIMO-OFDM) is used in various parts of wireless communication systems. Because the MIMO-OFDM system simultaneously transmits parallel data streams and each receive antenna receives all data streams at one time, the detection ability of the receiver is very important. Among the detection schemes suitable for OFDM, maximum likelihood (ML) detection has optimal performance, but its complexity is so high that it is infeasible. Linear detection schemes such as zero-forcing (ZF) and minimum mean square error (MMSE) have low complexity, but also low performance. Among non-linear detection schemes, the near-ML detection which is the sphere detection (SD) or the QR decomposition with M algorithm (QRD-M) also has optimal performance but the complexity of SD and QRD-M detection is also too high. Other non-linear detection schemes like successive interference cancellation (SIC) detection have low complexity. However, the performance of SIC detection is lower than other non-linear detection schemes. In this paper, selectively iterative detection is proposed for MIMO-OFDM system; it offers low complexity and good performance.

  • A Low-Complexity Signal Detection Approach in Uplink Massive MIMO Systems

    Zhuojun LIANG  Chunhui DING  Guanghui HE  

     
    LETTER-Digital Signal Processing

      Vol:
    E101-A No:7
      Page(s):
    1115-1119

    A low-complexity signal detection approach based on the Kaczmarz algorithm (KA) is proposed to iteratively realize minimum mean square error (MMSE) detection for uplink massive multiple-input multiple-output (MIMO) systems. While KA is used for straightforward matrix inversion, the MMSE detection requires the computation of the Gram matrix with high complexity. In order to avoid the Gram matrix computation, an equivalent augmented matrix is applied to KA-based MMSE detection. Moreover, promising initial estimation and an approximate method to compute soft-output information are utilized to further accelerate the convergence rate and reduce the complexity. Simulation results demonstrate that the proposed approach outperforms the recently proposed Neumann series, conjugate gradient, and Gauss-Seidel methods in complexity and error-rate performance. Meanwhile, the FPGA implementation results confirm that our proposed method can efficiently compute the approximate inverse with low complexity.

  • Novel Precoder Design with Generalized Side-Information Cancellation for Multiuser MIMO Downlink Systems

    Juinn-Horng DENG  Kuang-Min LIN  Meng-Lin KU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/02/21
      Vol:
    E100-B No:10
      Page(s):
    1911-1920

    A novel generalized side-information cancellation (GSIC) precoder is proposed for multiuser multi-input multi-output (MIMO) downlink systems with channel state information at the transmitter. The proposed transceiver involves the following stages. First, a minimum mean square error (MMSE) based channel inversion (MMSE-CI) technique is utilized to suppress multiuser broadcast interference. By using a GSIC technique, it can further reduce the residual multiuser interference and the noise induced by MMSE-CI preprocessing. Next, with a singular value decomposition method, the spatial stream interference of each user is suppressed by the pre-processing and post-processing eigenvector matrices. Finally, the proposed precoder can be extended to joint water filling and diagonal loading methods for performance enhancement. For the correlated MIMO channels, signal subspace and antenna selection methods, incorporating the proposed GSIC precoder, are further designed to maximize the sum rate performance. Simulation results show that the proposed GSIC precoder outperforms the conventional precoders. Besides, simulation results confirm that the proposed GSIC precoder with water filling, diagonal loading, and signal subspace techniques exhibits excellent performance.

  • Iterative Channel Estimation and Symbol Level Reed-Solomon Decoding Receivers for OFDM Systems

    Olayinka O. OGUNDILE  Daniel J. VERSFELD  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2016/10/17
      Vol:
    E100-B No:4
      Page(s):
    500-509

    Iterative channel estimation and decoding receivers have evolved over the years, most especially with Turbo and LPDC codes. Nevertheless, few works have determined the performance of symbol level Reed-Solomon (RS) codes in iterative receiver structures. The iterative channel estimation and symbol level RS decoding receiver structure found in literature concentrate on M-QAM systems over flat Rayleigh fading channels. In this paper, attention is focused on the performance of RS codes in iterative channel estimation and decoding receiver structures for Orthogonal Frequency Division Multiplexing (OFDM) systems on frequency-selective Rayleigh fading channels. Firstly, the paper extends the Koetter and Vardy (KV) RS iterative receiver structure over flat Rayleigh fading channels to frequency-selective Rayleigh fading channels. In addition, the paper develops a symbol level RS iterative receiver structure for OFDM systems on frequency-selective Rayleigh fading channels based on the Parity-check matrix Transformation Algorithm (PTA). The performance of the RS-KV and RS-PTA iterative receiver structures for OFDM systems are documented through computer simulation. The simulation results verify that both iterative receiver structures are suitable for real time RS OFDM wireless applications. The results also show that the developed RS-PTA iterative receiver structure is a low complexity and high performance alternative to the RS-KV iterative receiver structure.

  • A Linear Combining Scheme to Suppress Interference in Multiple Relay Systems

    Ahmet Ihsan CANBOLAT  Kazuhiko FUKAWA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2016/02/17
      Vol:
    E99-B No:8
      Page(s):
    1867-1873

    This paper proposes an interference suppression scheme based on linear combining for multiple relay systems. Interference from base stations and relays in neighboring cells degrades the bit error rate (BER) performance of mobile stations (MSs) near cell boundaries. To suppress such interference for half-duplex relay systems, the proposed scheme linearly combines received signals of the first and second phases at MS. Without channel state information (CSI) feedback, weight coefficients for the linear combining are estimated by the recursive least-squares (RLS) algorithm, which requires only information on preamble symbols of the target MS. Computer simulations of orthogonal frequency-division multiplexing (OFDM) transmission under two-cell and frequency selective fading conditions are conducted. It is demonstrated that the RLS-based linear combining with decision directed estimation is superior to the RLS-based linear combining using only the preamble and can outperform the minimum mean-squared error (MMSE) combining with estimated CSI when the number of preamble symbols is two and four that correspond to the minimum requirements for MMSE and RLS, respectively.

  • The Optimal MMSE-Based OSIC Detector for MIMO System

    Yunchao SONG  Chen LIU  Feng LU  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:1
      Page(s):
    232-239

    The ordered successive interference cancellation (OSIC) detector based on the minimum mean square error (MMSE) criterion has been proved to be a low-complexity detector with efficient bit error rate (BER) performance. As the well-known MMSE-Based OSIC detector, the MMSE-Based vertical Bell Laboratories Layered Space-Time (VBLAST) detector, whose computational complexity is cubic, can not attain the minimum BER performance. Some approaches to reducing the BER of the MMSE-Based VBLAST detector have been contributed, however these improvements have large computational complexity. In this paper, a low complexity MMSE-Based OSIC detector called MMSE-OBEP (ordering based on error probability) is proposed to improve the BER performance of the previous MMSE-Based OSIC detectors, and it has cubic complexity. The proposed detector derives the near-exact error probability of the symbols in the MMSE-Based OSIC detector, thus giving priority to detect the symbol with the smallest error probability can minimize the error propagation in the MMSE-Based OSIC detector and enhance the BER performance. We show that, although the computational complexity of the proposed detector is cubic, it can provide better BER performance than the previous MMSE-Based OSIC detector.

  • Achievement Accurate CSI for AF Relay MIMO/OFDM Based on Complex HTRCI Pilot Signal with Enhanced MMSE Equalization

    Yuta IDA  Chang-Jun AHN  Takahiro MATSUMOTO  Shinya MATSUFUJI  

     
    PAPER

      Vol:
    E98-A No:11
      Page(s):
    2254-2262

    Amplify-and-forward (AF) relay multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems can achieve high data rate and high quality communications. On the other hand, it has to estimate all channels between the source-relay and relay-destination nodes in the destination node. In MIMO/OFDM systems, high time resolution carrier interferometry (HTRCI) has been proposed to achieve an accurate channel estimation (CE) with a small number of pilot signals. However, since it has many interferences, an accurate CE is not obtained and the system performance is degraded in AF relay MIMO/OFDM systems. Therefore, in this paper, we propose the complex HTRCI (C-HTRCI) pilot signal and the enhanced minimum mean square error (E-MMSE) equalization to achieve an accurate CE and to improve the system performance for AF relay MIMO/OFDM systems.

  • Design of Two-Way Relay Network Using Space-Time Block Coded Network Coding with Relay Selection

    Xuan Nam TRAN  Van Bien PHAM  Duc Hiep VU  Yoshio KARASAWA  

     
    PAPER

      Vol:
    E98-A No:8
      Page(s):
    1657-1666

    This paper presents the design of an ad hoc two-way two-hop relay network using physical-layer network coding (PNC) in which multiple antennas are used at all nodes. In the considered network, the Alamouti's space-time block code (STBC) is used for transmission while linear detection is used for signal recovery. In order to facilitate linear estimation, we develop an equivalent multiuser STBC model for the proposed network and design the sum-and-difference matrix which allows convenient combination of the transmitted symbols from the end nodes. In addition, a simple relay selection method based on minimum mean square error (MSE) is proposed for performance improvement. Simulation results show that the proposed network achieves diversity order 2 while requiring only polynomial complexity. Moreover, it is possible to achieve significant bit error rate (BER) performance improvement when the proposed relay selection algorithm is used.

  • Weighted-Combining Calibration on Multiuser MIMO Systems with Implicit Feedback Open Access

    Hayato FUKUZONO  Tomoki MURAKAMI  Riichi KUDO  Yasushi TAKATORI  Masato MIZOGUCHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:4
      Page(s):
    701-713

    Implicit feedback is an approach that utilizes uplink channel state information (CSI) for downlink transmit beamforming on multiple-input multiple-output (MIMO) systems, relying on over-the-air channel reciprocity. The implicit feedback improves throughput efficiency because overhead of CSI feedback for change of over-the-air channel responses is omitted. However, it is necessary for the implicit feedback to calibrate circuitry responses that uplink CSI includes, because actual downlink and uplink channel responses do not match due to different transmit and receive circuitry chains. This paper presents our proposed calibration scheme, weighted-combining calibration (WCC); it offers improved calibration accuracy. In WCC, an access point (AP) calculates multiple calibration coefficients from ratios of downlink and uplink CSI, and then combines coefficients with minimum mean square error (MMSE) weights. The weights are derived using a linear approximation in the high signal to noise power ratio (SNR) regime. Analytical mean square error (MSE) of calibration coefficients with WCC and calibration schemes for comparison is expressed based on the linear approximation. Computer simulations show that the analytical MSE matches simulated one if the linear approximation holds, and that WCC improves the MSE and signal to interference plus noise power ratio (SINR). Indoor experiments are performed on a multiuser MIMO system with implicit feedback based on orthogonal frequency division multiplexing (OFDM), built using measurement hardware. Experimental results verify that the channel reciprocity can be exploited on the developed multiuser MIMO-OFDM system and that WCC is also effective in indoor environments.

  • Adaptive MIMO Detection for Circular Signals by Jointly Exploiting the Properties of Both Signal and Channel

    Yuehua DING  Yide WANG  Nanxi LI  Suili FENG  Wei FENG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:11
      Page(s):
    2413-2423

    In this paper, an adaptive expansion strategy (AES) is proposed for multiple-input/multiple-output (MIMO) detection in the presence of circular signals. By exploiting channel properties, the AES classifies MIMO channels into three types: excellent, average and deep fading. To avoid unnecessary branch-searching, the AES adopts single expansion (SE), partial expansion (PE) and full expansion (FE) for excellent channels, average channels and deep fading channels, respectively. In the PE, the non-circularity of signal is exploited, and the widely linear processing is extended from non-circular signals to circular signals by I (or Q) component cancellation. An analytical performance analysis is given to quantify the performance improvement. Simulation results show that the proposed algorithm can achieve quasi-optimal performance with much less complexity (hundreds of flops/symbol are saved) compared with the fixed-complexity sphere decoder (FSD) and the sphere decoder (SD).

1-20hit(137hit)