The ordered successive interference cancellation (OSIC) detector based on the minimum mean square error (MMSE) criterion has been proved to be a low-complexity detector with efficient bit error rate (BER) performance. As the well-known MMSE-Based OSIC detector, the MMSE-Based vertical Bell Laboratories Layered Space-Time (VBLAST) detector, whose computational complexity is cubic, can not attain the minimum BER performance. Some approaches to reducing the BER of the MMSE-Based VBLAST detector have been contributed, however these improvements have large computational complexity. In this paper, a low complexity MMSE-Based OSIC detector called MMSE-OBEP (ordering based on error probability) is proposed to improve the BER performance of the previous MMSE-Based OSIC detectors, and it has cubic complexity. The proposed detector derives the near-exact error probability of the symbols in the MMSE-Based OSIC detector, thus giving priority to detect the symbol with the smallest error probability can minimize the error propagation in the MMSE-Based OSIC detector and enhance the BER performance. We show that, although the computational complexity of the proposed detector is cubic, it can provide better BER performance than the previous MMSE-Based OSIC detector.
Yunchao SONG
Nanjing University of Posts and Telecommunications
Chen LIU
Nanjing University of Posts and Telecommunications
Feng LU
Nanjing University of Posts and Telecommunications
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Yunchao SONG, Chen LIU, Feng LU, "The Optimal MMSE-Based OSIC Detector for MIMO System" in IEICE TRANSACTIONS on Communications,
vol. E99-B, no. 1, pp. 232-239, January 2016, doi: 10.1587/transcom.2015EBP3196.
Abstract: The ordered successive interference cancellation (OSIC) detector based on the minimum mean square error (MMSE) criterion has been proved to be a low-complexity detector with efficient bit error rate (BER) performance. As the well-known MMSE-Based OSIC detector, the MMSE-Based vertical Bell Laboratories Layered Space-Time (VBLAST) detector, whose computational complexity is cubic, can not attain the minimum BER performance. Some approaches to reducing the BER of the MMSE-Based VBLAST detector have been contributed, however these improvements have large computational complexity. In this paper, a low complexity MMSE-Based OSIC detector called MMSE-OBEP (ordering based on error probability) is proposed to improve the BER performance of the previous MMSE-Based OSIC detectors, and it has cubic complexity. The proposed detector derives the near-exact error probability of the symbols in the MMSE-Based OSIC detector, thus giving priority to detect the symbol with the smallest error probability can minimize the error propagation in the MMSE-Based OSIC detector and enhance the BER performance. We show that, although the computational complexity of the proposed detector is cubic, it can provide better BER performance than the previous MMSE-Based OSIC detector.
URL: https://global.ieice.org/en_transactions/communications/10.1587/transcom.2015EBP3196/_p
Copy
@ARTICLE{e99-b_1_232,
author={Yunchao SONG, Chen LIU, Feng LU, },
journal={IEICE TRANSACTIONS on Communications},
title={The Optimal MMSE-Based OSIC Detector for MIMO System},
year={2016},
volume={E99-B},
number={1},
pages={232-239},
abstract={The ordered successive interference cancellation (OSIC) detector based on the minimum mean square error (MMSE) criterion has been proved to be a low-complexity detector with efficient bit error rate (BER) performance. As the well-known MMSE-Based OSIC detector, the MMSE-Based vertical Bell Laboratories Layered Space-Time (VBLAST) detector, whose computational complexity is cubic, can not attain the minimum BER performance. Some approaches to reducing the BER of the MMSE-Based VBLAST detector have been contributed, however these improvements have large computational complexity. In this paper, a low complexity MMSE-Based OSIC detector called MMSE-OBEP (ordering based on error probability) is proposed to improve the BER performance of the previous MMSE-Based OSIC detectors, and it has cubic complexity. The proposed detector derives the near-exact error probability of the symbols in the MMSE-Based OSIC detector, thus giving priority to detect the symbol with the smallest error probability can minimize the error propagation in the MMSE-Based OSIC detector and enhance the BER performance. We show that, although the computational complexity of the proposed detector is cubic, it can provide better BER performance than the previous MMSE-Based OSIC detector.},
keywords={},
doi={10.1587/transcom.2015EBP3196},
ISSN={1745-1345},
month={January},}
Copy
TY - JOUR
TI - The Optimal MMSE-Based OSIC Detector for MIMO System
T2 - IEICE TRANSACTIONS on Communications
SP - 232
EP - 239
AU - Yunchao SONG
AU - Chen LIU
AU - Feng LU
PY - 2016
DO - 10.1587/transcom.2015EBP3196
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E99-B
IS - 1
JA - IEICE TRANSACTIONS on Communications
Y1 - January 2016
AB - The ordered successive interference cancellation (OSIC) detector based on the minimum mean square error (MMSE) criterion has been proved to be a low-complexity detector with efficient bit error rate (BER) performance. As the well-known MMSE-Based OSIC detector, the MMSE-Based vertical Bell Laboratories Layered Space-Time (VBLAST) detector, whose computational complexity is cubic, can not attain the minimum BER performance. Some approaches to reducing the BER of the MMSE-Based VBLAST detector have been contributed, however these improvements have large computational complexity. In this paper, a low complexity MMSE-Based OSIC detector called MMSE-OBEP (ordering based on error probability) is proposed to improve the BER performance of the previous MMSE-Based OSIC detectors, and it has cubic complexity. The proposed detector derives the near-exact error probability of the symbols in the MMSE-Based OSIC detector, thus giving priority to detect the symbol with the smallest error probability can minimize the error propagation in the MMSE-Based OSIC detector and enhance the BER performance. We show that, although the computational complexity of the proposed detector is cubic, it can provide better BER performance than the previous MMSE-Based OSIC detector.
ER -