The search functionality is under construction.

Keyword Search Result

[Keyword] MMSE(137hit)

101-120hit(137hit)

  • Multi-User Detection Scheme Based on Hidden Training Sequence for DS-UWB Systems

    Sung-Yoon JUNG  Dong-Jo PARK  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:1
      Page(s):
    239-242

    In this letter, we propose a multi-user detection scheme based on a hidden training sequence for DS-UWB systems. The hidden training sequence, which uses a fraction of the informative sequence's transmitting power as training information, is utilized for the receiver filter adaptation and channel estimation. By using this, the proposed scheme offers increased bandwidth efficiency (no period dedicated for training) and also shows reasonably good performance and near-far resistance in single and multiple-access UWB indoor multipath channel environment.

  • Reduced Complexity Max-Log-MAP Sphere Decoder Using Group Detection in MIMO-OFDM Systems

    Tsuguhide AOKI  Yasuhiko TANABE  Hidehiro MATSUOKA  Hiroki SHOKI  

     
    PAPER

      Vol:
    E88-B No:11
      Page(s):
    4220-4228

    This paper proposes a Group Detection (GD) algorithm with Max-Log-MAP Sphere Decoder (MLM-SD) in order to reduce the complexity of signal detection in a Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) system. The proposed algorithm divides spatial streams into multiple partial spatial streams by using Minimum Mean Square Error (MMSE) detector, followed by multiple MLM-SDs with reduced number of spatial streams. Although the spatial diversity gain in the MLM-SD degrades because of the lack of the degrees of freedom exploited by the MMSE detector, its diversity gain is recovered by combining the metrics obtained by the multiple MLM-SDs. In a MIMO wireless LAN multipath fading environment, the complexity of the proposed algorithm is 10% of that of the original MLM-SD and the performance degradation in terms of SNR is slightly less than that of the original MLM-SD in 4-by-4 MIMO architecture with 64 QAM achieving 216 Mbps. It is also found that the proposed algorithm is robust against the limitation of the number of searches in sphere decoder.

  • Rake Performance for UWB-IR System with SISO and MISO

    Takahiro EZAKI  Tomoaki OHTSUKI  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E88-B No:10
      Page(s):
    4112-4116

    In this letter, we compare a Multiple-Input Single-Output (MISO)-Ultra WideBand (UWB)- Impulse Radio (IR) system and a Single-Input Single-Output (SISO)-UWB-IR system at high transmission rates. We evaluate the Bit Error Rate (BER) of the two systems with some RAKE receivers under heavy multipath environments. From the results of our computer simulation, we show that the SISO-UWB-IR system with Minimum Mean Square Error (MMSE)-RAKE receiver is a good candidate to achieve high transmission rates.

  • Adaptive MMSE Algorithm Used in Turbo Iterative SoIC of V-Blast System

    Huiqiang ZHOU  Yunzhou LI  Shidong ZHOU  Jing WANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E88-B No:10
      Page(s):
    4129-4132

    Based on the minimum mean square error (MMSE) detection with iterative soft interference cancellation (SoIC), we propose an adaptive MMSE (A-MMSE) algorithm which acts as an MMSE operator at the beginning of iteration and a maximum ratio combination (MRC) when the interference is nearly cancelled. In our algorithm, a modified metric matrix based on the reliability of soft information from the decoder output is multiplied by the interference part of channel correlation matrix to update the detection operator. The simulation results have shown that this A-MMSE iterative SoIC algorithm can achieve significant performance advantage over the traditional MMSE iterative SoIC algorithm.

  • Combined ML and MMSE Multiuser Detection for STBC-OFDM Systems

    Anh Tuan LE  Xuan Nam TRAN  Tadashi FUJINO  

     
    PAPER-Communication Theory

      Vol:
    E88-A No:10
      Page(s):
    2915-2925

    Performance of the minimum mean square error (MMSE) detection is far below that of the maximum likelihood (ML) detection in a multiuser environment and decreases significantly as the number of co-channel users increases. In this paper, we propose a combined MMSE and ML multiuser detection scheme for space-time block coded (STBC) orthogonal frequency division multiplexing (STBC-OFDM) which has improved performance but with low complexity. In particular, we propose a reduced complexity ML post-detection (ML-PDP) scheme which can correct erroneously estimated bits from the outputs of MMSE multiuser detection. The proposed ML-PDP scheme performs sequential search to detect a predefined number of bits with higher probability of error and then uses ML detection to correct them. Upon controlling the number of corrected bits it is possible to balance the system performance with complexity associated with the ML-PDP. We show that significant improvement can be achieved at the cost of only small additional complexity compared with the MMSE multiuser detection.

  • Performance Improvement of MAI Cancellation in Fading DS/CDMA Channels

    Kilsoo JEONG  Mitsuo YOKOYAMA  Hideyuki UEHARA  

     
    PAPER-Communication Theory

      Vol:
    E88-A No:10
      Page(s):
    2869-2877

    In this paper, we propose a single-user strategy for demodulating asynchronous direct-sequence code-division multiple access (DS/CDMA) signals for improving the performance of the adaptive receiver in fast fading channels. Since the adaptive receiver depends on the channel coefficient of all users, it cannot be implemented adaptively in fading channels due to severe tracking problem. A proposed adaptive receiver based on the modified minimum mean-squared-error (MMSE) criterion is used for solving this problem. By simulation, it is verified that our proposal is a promising method to solve the problem, and the results show that the proposed adaptive receiver has substantially larger capacity than the conventional adaptive receiver in fast fading channels.

  • Computational Complexity and Performance of RAKE Receivers with Channel Estimation for DS-UWB

    Hiroyuki SATO  Tomoaki OHTSUKI  

     
    PAPER-RAKE Receiver

      Vol:
    E88-A No:9
      Page(s):
    2318-2326

    In this paper, we evaluate the computational complexity and the performance of the RAKE receivers for the Direct Sequence--Ultra Wideband (DS-UWB) with considering the accuracy of channel estimation in a multipath channel. As RAKE receivers for DS-UWB, we consider the maximal-ratio combining (MRC)-RAKE, the minimum mean square error (MMSE)-RAKE, and the MRC-RAKE-Equalizer that is the MRC-RAKE followed by a liner equalizer. Generally, if the channel estimation is perfect, as the number of fingers or taps increases, the performance of each receiver is improved, however the computational complexity of each receiver increases. In practice, the channel estimation is not perfect. The channel estimation error makes their performances degraded. Therefore, the performances of the RAKE receivers depend on the accuracy of channel estimation. Consequently, we evaluate the computational complexities and the Bit Error Rates (BERs) of MRC-RAKE, MMSE-RAKE, and MRC-RAKE-Equalizer with considering the accuracy of channel estimation for DS-UWB. We show that the accuracy of channel estimation affects the BER of each receiver significantly. We also show that when the accuracy of channel estimation is high, MRC-RAKE-Equalizer can achieve the better BER than MMSE-RAKE with less computational complexity, while MMSE-RAKE can achieve the better BER than MRC-RAKE-Equalizer when the accuracy of channel estimation is low.

  • Turbo Transceivers for MIMO Wireless Communications and Their Performance Verification via Multi-Dimensional Channel Sounding

    Tadashi MATSUMOTO  Reiner S. THOMA  

     
    INVITED PAPER

      Vol:
    E88-B No:6
      Page(s):
    2239-2251

    The discovery of the Turbo codes has driven research on the creation of new signal detection concepts that are, in general, referred to as the Turbo approach. Recently, this approach has made a drastic change in creating signal detection techniques and algorithms such as equalization of inter-symbol interference (ISI) experienced by broadband single carrier signaling over mobile radio channels. A goal of this paper is to provide readers with broad views and knowledge of the Turbo concept-based Multiple-Input Multiple-Output (MIMO) signal transmission techniques. How the techniques have been developed in various applications and how they perform in real-field environments are introduced.

  • Novel Techniques to Reduce Performance Sensitivity to Spatial Correlation and Timing Offset in Space-Time Coded MIMO Turbo Equalization

    Nenad VESELINOVIC  Tadashi MATSUMOTO  Christian SCHNEIDER  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E88-B No:4
      Page(s):
    1594-1601

    Spatial correlation among antenna elements both at transmitter and receiver sides in MIMO communications is known to have a crucial impact on system performances. Another factor that can severely degrade receiver performances is the timing offset relative to the channel delay profile. In this paper we derive a novel receiver for turbo MIMO equalization in space-time-trellis-coded (STTrC) system to jointly address the problems described above. The equalizer is based on low complexity MMSE filtering. A joint detection technique of the several transmit antennas is used to reduce the receiver's sensitivity to the spatial correlation at the transmitter and receiver sides. Furthermore, only the significant portion of the channel impulse response (CIR) is taken into account while detecting signals. The remaining portion of CIR is regarded as the unknown interference which is effectively suppressed by estimating its covariance matrix. By doing this the receiver's complexity can be reduced since only a portion of the CIR has to be estimated and used for signal detection. Furthermore, by suppressing the interference from the other paths outside the equalizers coverage the receiver's sensitivity to the timing offset can be reduced. The proposed receiver's performance is evaluated using field measurement data obtained through multidimensional channel sounding. It is verified through computer simulations that the performance sensitivity of the joint detection-based receiver to the spatial correlation is significantly lower than with the receiver that detects only one antenna at a time. Furthermore, the performance sensitivity to the timing offset of the proposed receiver is shown to be significantly lower than that of the receiver that ignores the existence of the remaining multipath CIR components.

  • On Beamforming for Space-Time Block Coded OFDM Systems in Multipath Fading Channels

    Sang-Mun LEE  Byeong-Ho YOON  Hyung-Jin CHOI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E88-B No:3
      Page(s):
    1182-1190

    Recently, in order to improve high speed data transmission and spectral efficiency in wireless communication systems, the combination of OFDM and space-time coding is being actively studied. In order to maximize the system efficiency, the problem of co-channel interference must be solved. One technique to overcome the co-channel interference and to increase the system capacity is to use adaptive antennas. Conventional beamforming techniques for single antenna cannot be applied directly to STBC-OFDM systems, because the signals transmitted from the two transmit antennas are superposed at the receive antenna and the interference between signals of the two transmit antennas occurs. In this paper, we present the MMSE beamforming technique using training sequence for STBC-OFDM systems in reverse link and evaluate the performance by using various parameters such as the number of training blocks, cluster sizes and angle spreads in Two-ray, TU and HT channels. From the simulation results, we show the best cluster sizes and the number of training blocks corresponding to these cluster sizes.

  • A Study on Forward Link Capacity in MC-CDMA Cellular System with MMSEC Receiver

    Noriaki MIYAZAKI  Toshinori SUZUKI  

     
    PAPER

      Vol:
    E88-B No:2
      Page(s):
    585-593

    This paper focuses on the MC-CDMA (Multi Carrier-Code Division Multiple Access) with the MMSEC (Minimum Mean Square Error Combining) receiver, which is a good candidate of a transmission scheme for beyond 3G systems. This paper evaluates the forward link capacity using the MMSEC receiver in the MC-CDMA cellular system, which employs TDM (Time Division Multiplex) transmission for multiple users. In this paper, the PDF (Probability Distribution Function) of the SINR (Symbol to Interference plus Noise energy Ratio) after MMSEC under multi-cell environment are calculated with the various number of the code division multiplexes. Based on the PDF, the numerical relation can be derived between the peak rate of the adaptive transmission and the average transmission rate per sector.

  • Throughput Comparison of Turbo-Coded HARQ in OFDM, MC-CDMA and DS-CDMA with Frequency-Domain Equalization

    Deepshikha GARG  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E88-B No:2
      Page(s):
    664-677

    OFDM, MC-CDMA and DS-CDMA are being researched vigorously as the prospective signaling technique for the next generation mobile communications systems, which will be characterized by the broadband packet technology. With packet transmissions, hybrid ARQ (HARQ) will be inevitable for error control. HARQ with rate compatible punctured turbo (RCPT) codes is one of the promising techniques. Data rate equivalent to the OFDM system can be attained with MC-CDMA and DS-CDMA by assigning all the available codes to the same user resulting in what is commonly referred to as multicode MC-CDMA and multicode DS-CDMA. A rake receiver is used for receiving the DS-CDMA signals. However, recently minimum mean square error frequency-domain equalization (MMSE-FDE) has been proposed for the reception of DS-CDMA signals. In this paper, we introduce RCPT HARQ to DS-CDMA with MMSE-FDE and compare its throughput performance with OFDM, multicode MC-CDMA and multicode DS-CDMA with rake combining. MMSE weight for packet combining is introduced and the soft value generation for turbo coding in MC-CDMA and DS-CDMA with MMSE-FDE is presented. The throughput is theoretically evaluated for the uncoded case. For RCPT-HARQ, the comparison is done by computer simulations. It is found that the throughput of HARQ using DS-CDMA with MMSE-FDE is the same as or better than using MC-CDMA. However, with higher level modulation, type I HARQ using OFDM is better than using either MC-CDMA or DS-CDMA; for type II HARQ without redundancy in the first transmission, however, MC-CDMA and DS-CDMA gives a higher throughput.

  • Study on the OVSF Code Selection for Downlink MC-CDMA

    Takamichi INOUE  Deepshikha GARG  Fumiyuki ADACHI  

     
    PAPER

      Vol:
    E88-B No:2
      Page(s):
    499-508

    In downlink MC-CDMA, orthogonal variable spreading factor (OVSF) codes can be used to allow multirate communications while maintaining the orthogonality among the users with different data rates. In this paper, we point out that simple selection of the OVSF codes results in degraded performance. We show that this happens because simple code selection results in power concentration over certain consecutive subcarriers; severe power loss in the received signal occurs when these subcarriers experience a deep fade in a frequency selective fading channel. In addition, we show two effective techniques to avoid the performance degradation: random code selection and frequency interleaving; which technique provides a better performance depends on modulation level, code multiplexing order, and presence of channel coding.

  • Adaptive Algorithm Based on Accumulated Signal Processing for Fast Fading Channels with Application to OFDM Mobile Radio

    Pubudu Sampath WIJESENA  Tetsuki TANIGUCHI  Yoshio KARASAWA  

     
    PAPER

      Vol:
    E88-B No:2
      Page(s):
    568-574

    In this paper, we propose an adaptive algorithm based on accumulated signal processing, which could be applicable to Post-FFT-type OFDM adaptive array antennas. Proposed scheme calculates the weight of each element at a particular instant t, by considering both post- and pre-received symbols. Because of the use of additional forthcoming information on channel behavior in the weight calculation scheme, one can expect an improved performance in fast fading conditions by using the proposed adaptive algorithm. This paper also discusses the application of the proposed adaptive algorithm to OFDM adaptive array. In OFDM application, a few subchannels are being used to transmit pilot symbols, and at the receiver, the proposed adaptive algorithm is applied to those pilot subchannels, and interpolates the weights for the data subchannels which are allocated between the pilot subchannels. Finally, the system performance improvement with the application of the proposed adaptive algorithm is verified by computer simulation.

  • Frequency-Domain Equalization for MC-CDMA Downlink Site Diversity and Performance Evaluation

    Takamichi INOUE  Shinsuke TAKAOKA  Fumiyuki ADACHI  

     
    PAPER-Diversity

      Vol:
    E88-B No:1
      Page(s):
    84-92

    Similar to direct sequence code division multiple access (DS-CDMA), site diversity can be applied to a multicarrier-CDMA (MC-CDMA) cellular system to improve the bit error rate (BER) performance for a user with weak received signal power, thus resulting in an increased link capacity. In this paper, the downlink site diversity reception using frequency-domain equalization based on minimum mean square error (MMSE) is considered for a MC-CDMA cellular system. A set of active base stations to be involved in the site diversity operation is determined based on the received signal power measurement by a mobile station. Downlink capacity with site diversity is evaluated by computer simulation. The impacts of path loss exponent and shadowing loss standard deviation on the site diversity effect are discussed. Furthermore, the performance improvement by antenna diversity reception is discussed.

  • Performance of Coded Multicarrier Multiple Transmit Antenna DS-CDMA Systems in the Presence of Power Amplifier Nonlinearity

    K.R. Shankar KUMAR  Ananthanarayanan CHOCKALINGAM  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E87-B No:10
      Page(s):
    3032-3043

    While a multicarrier approach of achieving frequency diversity performs well in the presence of partial-band interference, it suffers from the effects of intermodulation distortion (IMD) due to power amplifier (PA) nonlinearity. On the other hand, transmit diversity using multiple transmit antennas has the benefit of no IMD effects, but can suffer from a larger performance degradation due to partial-band interference (e.g., jamming or narrowband signals in a overlay system) compared to the multicarrier approach. Hence, hybrid diversity schemes which use both multicarrier as well as multiple transmit antennas are of interest. Techniques to suppress IMD effects in such hybrid diversity schemes are important. In this paper, we propose and evaluate the performance of a minimum mean square error (MMSE) receiver to suppress the intermodulation distortion in a coded multicarrier multiple transmit antenna (P transmit antennas) DS-CDMA system with M subcarriers on each transmit antenna, for both BPSK and QPSK modulation. The system uses rate-1/M convolutional coding, interleaving and space-time coding. We compare the performance of a (M = 4,P = 2) scheme and a (M = 2,P = 4) scheme, both having the same diversity order. We show that the proposed MMSE receiver effectively suppresses the IMD effects, thus enabling to retain better antijamming capability without much loss in performance due to IMD effects.

  • Performance Evaluation of Turbo and Space-Time Turbo Coded MC-CDMA Downlink in Single and Multi-Cell Environments

    Shigehiko TSUMURA  Mikko VEHKAPERA  Zexian LI  Djordje TUJKOVIC  Markku JUNTTI  Shinsuke HARA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E87-B No:10
      Page(s):
    3011-3020

    In this paper, we evaluate the performance of single- and multi-antenna multi-carrier code division multiple access (MC-CDMA) downlink (base station to mobile terminal) systems in single- and multi-cell environments. We first propose a minimum mean square error (MMSE) filter with a Gaussian approximation for a single input single output (SISO) MC-CDMA downlink system. Then, we apply it to a SIMO (single input multiple output) system with a conventional turbo coding. Furthermore, we compare the performance of SISO (11) and SIMO (12) MC-CDMA systems with that of a multiple input multiple output (MIMO) (22) system employing space-time turbo coded modulation (STTuCM) in a multi-cell environment with 7 cells by computer simulation. Based on the computer simulation results, it is found that the considered MIMO system can achieve twofold capacity with the same transmission power in the multi-cell environment.

  • Performance Comparison of Delay Transmit Diversity and Frequency-Domain Space-Time Coded Transmit Diversity for Orthogonal Multicode DS-CDMA Signal Reception Using Frequency-Domain Equalization

    Takeshi ITAGAKI  Kazuaki TAKEDA  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E87-B No:9
      Page(s):
    2719-2728

    In a severe frequency-selective fading channel, the bit error rate (BER) performance of orthogonal multicode DS-CDMA is severely degraded since the orthogonality property of spreading codes is partially lost. The frequency-selectivity of a fading channel can be exploited by using frequency-domain equalization to improve the BER performance. Further performance improvement can be obtained by using transmit diversity. In this paper, joint transmit diversity and frequency-domain equalization is presented for the reception of orthogonal multicode DS-CDMA signals in a frequency-selective fading channel. As for transmit diversity, delay transmit diversity (DTD) and frequency-domain space-time transmit diversity (STTD) are considered. The achievable BER performance of multicode DS-CDMA in a frequency-selective Rayleigh fading channel is evaluated by computer simulation. It is shown that the frequency-domain STTD significantly improves the BER performance irrespective of the degree of the channel frequency-selectivity while DTD is useful only for a weak frequency-selective channel.

  • Frequency Offset Compensation with MMSE-MUD for Multi-Carrier CDMA in Quasi-Synchronous Uplink

    Osamu TAKYU  Tomoaki OHTSUKI  Masao NAKAGAWA  

     
    PAPER-Wireless Communication Technology

      Vol:
    E87-B No:6
      Page(s):
    1495-1504

    Multi-Carrier Code Division Multiple Access (MC-CDMA) is one of candidates for the next generation wireless communication systems. In an uplink, the MC-CDMA system suffers from the different access timing (asynchronous transmission), the different fading, and the different frequency offsets of each active user. In this paper we analyze the effects of the frequency offset compensation with MMSE-MUD (minimum mean square error based multi-user detection) for MC-CDMA in a quasi-synchronous uplink. We consider the MC-CDMA system with two subcarrier mapping schemes, the continuous mapping scheme and the discrete mapping scheme. From our theoretical analysis and computer simulation, we show that the MMSE-MUD can compensate the different frequency offsets among users. We also show that the MMSE-MUD significantly improves the bit error rate (BER) for the MC-CDMA system with the continuous mapping scheme.

  • Joint Space-Time Transmit Diversity and Minimum Mean Square Error Equalization for MC-CDMA with Antenna Diversity Reception

    Deepshikha GARG  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technology

      Vol:
    E87-B No:4
      Page(s):
    849-857

    In this paper, the space time transmit diversity (STTD) decoding combined with minimum mean square error (MMSE) equalization is presented for MC-CDMA downlink and uplink in the presence of multiple receive antennas. The equalization weights that minimize the MSE for each subcarrier are derived. From computer simulation, it was found that the BER performance of STTD decoding combined with MMSE equalization and Mr-antenna diversity reception using the weights derived in this paper provides the same diversity order as 2Mr-antenna receive diversity with MMSE equalization but with 3 dB performance penalty and is always better than that with no diversity. The uplink BER performance can also be improved with STTD, but the error floor still exists. However, with 2-receive antennas in addition to 2-antenna STTD, the BER floor can be reduced to around 10-5 even for the uplink.

101-120hit(137hit)