The search functionality is under construction.

Author Search Result

[Author] Tomoki MURAKAMI(10hit)

1-10hit
  • Efficient Zero-Knowledge Proofs of Graph Signature for Connectivity and Isolation Using Bilinear-Map Accumulator

    Toru NAKANISHI  Hiromi YOSHINO  Tomoki MURAKAMI  Guru-Vamsi POLICHARLA  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2021/09/08
      Vol:
    E105-A No:3
      Page(s):
    389-403

    To prove the graph relations such as the connectivity and isolation for a certified graph, a system of a graph signature and proofs has been proposed. In this system, an issuer generates a signature certifying the topology of an undirected graph, and issues the signature to a prover. The prover can prove the knowledge of the signature and the graph in the zero-knowledge, i.e., the signature and the signed graph are hidden. In addition, the prover can prove relations on the certified graph such as the connectivity and isolation between two vertexes. In the previous system, using integer commitments on RSA modulus, the graph relations are proved. However, the RSA modulus needs a longer size for each element. Furthermore, the proof size and verification cost depend on the total numbers of vertexes and edges. In this paper, we propose a graph signature and proof system, where these are computed on bilinear groups without the RSA modulus. Moreover, using a bilinear map accumulator, the prover can prove the connectivity and isolation on a graph, where the proof size and verification cost become independent from the total numbers of vertexes and edges.

  • Dynamic Terminal Connection Control Using Multi-Radio Unlicensed Access for 5G Evolution and Beyond

    Toshiro NAKAHIRA  Tomoki MURAKAMI  Hirantha ABEYSEKERA  Koichi ISHIHARA  Motoharu SASAKI  Takatsune MORIYAMA  Yasushi TAKATORI  

     
    PAPER

      Pubricized:
    2021/03/23
      Vol:
    E104-B No:9
      Page(s):
    1138-1146

    In this paper, we examine techniques for improving the throughput of unlicensed radio systems such as wireless LANs (WLANs) to take advantage of multi-radio access to mobile broadband, which will be important in 5G evolution and beyond. In WLANs, throughput is reduced due to mixed standards and the degraded quality of certain frequency channels, and thus control techniques and an architecture that provide efficient control over WLANs are needed to solve the problem. We have proposed a technique to control the terminal connection dynamically by using the multi-radio of the AP. Furthermore, we have proposed a new control architecture called WiSMA for efficient control of WLANs. Experiments show that the proposed method can solve those problems and improve the WLAN throughput.

  • Implementation and Evaluation of Real-Time Distributed Zero-Forcing Beamforming for Downlink Multi-User MIMO Systems

    Tomoki MURAKAMI  Koichi ISHIHARA  Riichi KUDO  Yusuke ASAI  Takeo ICHIKAWA  Masato MIZOGUCHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:10
      Page(s):
    2521-2529

    The implementation and experimental evaluations of distributed zero-forcing beamforming (DZFBF) for downlink multi-user multiple-input multiple-output (DL MU-MIMO) systems are presented. In DZFBF, multiple access points (APs) transmit to own desired stations (STAs) at the same time and using the same frequency channel while mitigating inter-cell interference. To clarify the performance and feasibility of DZFBF, we develop a real-time transmission testbed that includes two APs and four STAs; all are implemented using field programmable gate array. For real-time transmission, we also implement a simple weight generation process based on ZF weight using channel state information which is fed back from STAs; it is an extension of the weight generation approach used in DL MU-MIMO systems. By using our testbed, we demonstrate the real-time transmission performance in actual indoor multi-cell environments. These results indicate that DL DZFBF is more effective than DL MU-MIMO with time division multiple access.

  • Centralized Control Method of Multi-Radio and Terminal Connection for 802.11 Wireless LAN Mixed Environment

    Toshiro NAKAHIRA  Koichi ISHIHARA  Motoharu SASAKI  Hirantha ABEYSEKERA  Tomoki MURAKAMI  Takatsune MORIYAMA  Yasushi TAKATORI  

     
    PAPER

      Pubricized:
    2021/09/01
      Vol:
    E105-B No:2
      Page(s):
    186-195

    In this paper, we propose a novel centralized control method to handle multi-radio and terminal connections in an 802.11ax wireless LAN (802.11ax) mixed environment. The proposed control method can improve the throughput by applying 802.11ax Spatial Reuse in an environment hosting different terminal standards and mixed terminal communication quality. We evaluate the proposed control method by computer simulations assuming environments with mixed terminal standards, mixed communication quality, and both.

  • Performance Evaluation of Interference-Aware Multi-Cell Beamforming for an Overlapping Cells Environment

    Tomoki MURAKAMI  Riichi KUDO  Takeo ICHIKAWA  Naoki HONMA  Masato MIZOGUCHI  

     
    PAPER-Antennas and Propagation

      Vol:
    E96-B No:6
      Page(s):
    1492-1501

    As wireless LAN systems become more widespread, the number of access points (APs) is increasing. A large number of APs cause overlapping cells where nearby cells utilize the same frequency channel. In the overlapping cells, inter-cell interference (ICI) degrades the throughput. This paper proposes an interference-aware multi-cell beamforming (IMB) technique to reduce the throughput degradation in the overlapping cells. The IMB technique improves transmission performance better than conventional multi-cell beamforming based on a decentralized control scheme. The conventional technique mitigates ICI by nullifying all the interference signal space (ISS) by beamforming, but the signal spaces to the user terminal (UT) is also limited because the degree of freedom (DoF) at the AP is limited. On the other hand, the IMB technique increases the signal space to the UT because the DoF at the AP is increased by selecting the ISS by allowing a small amount of ICI. In addition, we introduce a method of selecting the ISS in a decentralized control scheme. In our work, we analyze the interference channel state information (CSI) and evaluate the transmission performance of the IMB technique by using a measured CSI in an actual indoor environment. As a result, we find that the IMB technique becomes more effective as the number of UT antennas in nearby cells increases.

  • Weighted-Combining Calibration on Multiuser MIMO Systems with Implicit Feedback Open Access

    Hayato FUKUZONO  Tomoki MURAKAMI  Riichi KUDO  Yasushi TAKATORI  Masato MIZOGUCHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:4
      Page(s):
    701-713

    Implicit feedback is an approach that utilizes uplink channel state information (CSI) for downlink transmit beamforming on multiple-input multiple-output (MIMO) systems, relying on over-the-air channel reciprocity. The implicit feedback improves throughput efficiency because overhead of CSI feedback for change of over-the-air channel responses is omitted. However, it is necessary for the implicit feedback to calibrate circuitry responses that uplink CSI includes, because actual downlink and uplink channel responses do not match due to different transmit and receive circuitry chains. This paper presents our proposed calibration scheme, weighted-combining calibration (WCC); it offers improved calibration accuracy. In WCC, an access point (AP) calculates multiple calibration coefficients from ratios of downlink and uplink CSI, and then combines coefficients with minimum mean square error (MMSE) weights. The weights are derived using a linear approximation in the high signal to noise power ratio (SNR) regime. Analytical mean square error (MSE) of calibration coefficients with WCC and calibration schemes for comparison is expressed based on the linear approximation. Computer simulations show that the analytical MSE matches simulated one if the linear approximation holds, and that WCC improves the MSE and signal to interference plus noise power ratio (SINR). Indoor experiments are performed on a multiuser MIMO system with implicit feedback based on orthogonal frequency division multiplexing (OFDM), built using measurement hardware. Experimental results verify that the channel reciprocity can be exploited on the developed multiuser MIMO-OFDM system and that WCC is also effective in indoor environments.

  • CSI Feedback Reduction Method for Downlink Multiuser MIMO Transmission Using Dense Distributed Antenna Selection

    Tomoki MURAKAMI  Koichi ISHIHARA  Yasushi TAKATORI  Masato MIZOGUCHI  Kentaro NISHIMORI  

     
    PAPER-MIMO

      Pubricized:
    2017/08/22
      Vol:
    E101-B No:2
      Page(s):
    426-433

    This paper proposes a novel method of reducing channel state information (CSI) feedback by using transmit antenna selection for downlink multiuser multiple input multiple output (DL-MU-MIMO) transmission in dense distributed antenna systems. It is widely known that DL-MU-MIMO transmission achieves higher total bit-rate by mitigating inter-user interference based on pre-coding techniques. The pre-coding techniques require CSI between access point (AP) and multiple users. However, overhead for CSI acquisition degrades the transmission efficiency of DL-MU-MIMO transmission. In the proposed CSI feedback reduction method, AP first selects the antenna set that maximizes the received power at each user, second it skips the sequence of CSI feedback for users whose signal to interference power ratio is larger than a threshold, and finally it performs DL-MU-MIMO transmission to multiple users by using the selected antenna set. To clarify the proposed method, we evaluate it by computer simulations in an indoor scenario. The results show that the proposed method can offer higher transmission efficiency than the conventional DL-MU-MIMO transmission with the usual CSI feedback method.

  • An Actual Stadium Verification of WLAN Using a Distributed Smart Antenna System (D-SAS) Open Access

    Tomoki MURAKAMI  Koichi ISHIHARA  Hirantha ABEYSEKERA  Yasushi TAKATORI  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2020/07/14
      Vol:
    E104-B No:1
      Page(s):
    109-117

    Dense deployments of wireless local area network (WLAN) access points (APs) are accelerating to accommodate the massive wireless traffic from various mobile devices. The AP densification improves the received power at mobile devices; however, total throughput in a target area is saturated by inter-cell interference (ICI) because of the limited number of frequency channels available for WLANs. To substantially mitigate ICI, we developed and described a distributed smart antenna system (D-SAS) proposed for dense WLAN AP deployment in this paper. We also describe a system configuration based on our D-SAS approach. In this approach, the distributed antennas externally attached to each AP can be switched so as to make the transmit power match the mobile device's conditions (received power and packet type). The gains obtained by the antenna switching effectively minimize the transmission power required of each AP. We also describe experimental measurements taken in a stadium using a system prototype, the results show that D-SAS offers double the total throughput attained by a centralized smart antenna system (C-SAS).

  • Dynamic Group-Based Antenna Selection for Uplink Multi-User MIMO in Distributed Antenna System

    Sho YOSHIDA  Kentaro NISHIMORI  Soichi ITO  Tomoki MURAKAMI  Koichi ISHIHARA  Yasushi TAKATORI  

     
    PAPER

      Pubricized:
    2018/01/22
      Vol:
    E101-B No:7
      Page(s):
    1552-1560

    This paper proposes a hardware configuration for uplink multi-user multiple-input multiple-output (MU-MIMO) transmissions in a distributed antenna system (DAS). The demand for high-speed transmission in the uplink has increased recently, because of which standardizations in LTE-advanced and IEEE 802.11ax networks is currently underway. User terminal (UT) scheduling on the downlink MU-MIMO transmission is easy even in unlicensed band such as those in wireless local area network (WLAN) systems. However, the detailed management of the UTs is difficult on the uplink MU-MIMO transmissions because of the decentralized wireless access control. The proposed configuration allows an antenna to be selected from an external device on the access point (AP). All AP antennas are divided into groups, and the received signal in each group is input to the amplitude detector via a directional coupler. Subsequently, the selected antenna is fed by a multiple-to-one switch instead of a matrix switch. To clarify the effectiveness of the proposed configuration, we conduct computer simulations based on the ray-tracing method for propagation channels in an indoor environment.

  • On the Feasibility of an Adaptive Movable Access Point System in a Static Indoor WLAN Environment

    Tomoki MURAKAMI  Shingo OKA  Yasushi TAKATORI  Masato MIZOGUCHI  Fumiaki MAEHARA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2018/01/10
      Vol:
    E101-B No:7
      Page(s):
    1693-1700

    This paper investigates an adaptive movable access point (AMAP) system and explores its feasibility in a static indoor classroom environment with an applied wireless local area network (WLAN) system. In the AMAP system, the positions of multiple access points (APs) are adaptively moved in accordance with clustered user groups, which ensures effective coverage for non-uniform user distributions over the target area. This enhances the signal to interference and noise power ratio (SINR) performance. In order to derive the appropriate AP positions, we utilize the k-means method in the AMAP system. To accurately estimate the position of each user within the target area for user clustering, we use the general methods of received signal strength indicator (RSSI) or time of arrival (ToA), measured by the WLAN systems. To clarify the basic effectiveness of the AMAP system, we first evaluate the SINR performance of the AMAP system and a conventional fixed-position AP system with equal intervals using computer simulations. Moreover, we demonstrate the quantitative improvement of the SINR performance by analyzing the ToA and RSSI data measured in an indoor classroom environment in order to clarify the feasibility of the AMAP system.