The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Shigeru YAMASHITA(29hit)

1-20hit(29hit)

  • Tensor Rank and Strong Quantum Nondeterminism in Multiparty Communication

    Marcos VILLAGRA  Masaki NAKANISHI  Shigeru YAMASHITA  Yasuhiko NAKASHIMA  

     
    PAPER-Fundamentals of Information Systems

      Vol:
    E96-D No:1
      Page(s):
    1-8

    In this paper we study quantum nondeterminism in multiparty communication. There are three (possibly) different types of nondeterminism in quantum computation: i) strong, ii) weak with classical proofs, and iii) weak with quantum proofs. Here we focus on the first one. A strong quantum nondeterministic protocol accepts a correct input with positive probability and rejects an incorrect input with probability 1. In this work we relate strong quantum nondeterministic multiparty communication complexity to the rank of the communication tensor in the Number-On-Forehead and Number-In-Hand models. In particular, by extending the definition proposed by de Wolf to nondeterministic tensor-rank (nrank), we show that for any boolean function f when there is no prior shared entanglement between the players, 1) in the Number-On-Forehead model the cost is upper-bounded by the logarithm of nrank(f); 2) in the Number-In-Hand model the cost is lower-bounded by the logarithm of nrank(f). Furthermore, we show that when the number of players is o(log log n), we have NQP BQP for Number-On-Forehead communication.

  • An Energy-Efficient Patchable Accelerator and Its Design Methods

    Hiroaki YOSHIDA  Masayuki WAKIZAKA  Shigeru YAMASHITA  Masahiro FUJITA  

     
    PAPER-High-Level Synthesis and System-Level Design

      Vol:
    E97-A No:12
      Page(s):
    2507-2517

    With the shorter time-to-market and the rising cost in SoC development, the demand for post-silicon programmability has been increasing. Recently, programmable accelerators have attracted more attention as an enabling solution for post-silicon engineering change. However, programmable accelerators suffers from 5∼10X less energy efficiency than fixed-function accelerators mainly due to their extensive use of memories. This paper proposes a highly energy-efficient accelerator which enables post-silicon engineering change by a control patching mechanism. Then, we propose a patch compilation method from a given pair of an original design and a modified design. We also propose a design method to add redundant wires in advance to decrease the necessary amount of patch memory for post-silicon engineering change. Experimental results demonstrate that the proposed accelerators offer high energy efficiency competitive to fixed-function accelerators and can achieve about 5X higher efficiency than the existing programmable accelerators. We also show the trade-off between redundant wires and the necessary amount of patch memory.

  • An Efficient Method for Finding an Optimal Bi-Decomposition

    Shigeru YAMASHITA  Hiroshi SAWADA  Akira NAGOYA  

     
    PAPER-Logic Synthesis

      Vol:
    E81-A No:12
      Page(s):
    2529-2537

    This paper presents a new efficient method for finding an "optimal" bi-decomposition form of a logic function. A bi-decomposition form of a logic function is the form: f(X) = α(g1(X1), g2(X2)). We call a bi-decomposition form optimal when the total number of variables in X1 and X2 is the smallest among all bi-decomposition forms of f. This meaning of optimal is adequate especially for the synthesis of LUT (Look-Up Table) networks where the number of function inputs is important for the implementation. In our method, we consider only two bi-decomposition forms; (g1 g2) and (g1 g2). We can easily find all the other types of bi-decomposition forms from the above two decomposition forms. Our method efficiently finds one of the existing optimal bi-decomposition forms based on a branch-and-bound algorithm. Moreover, our method can also decompose incompletely specified functions. Experimental results show that we can construct better networks by using optimal bi-decompositions than by using conventional decompositions.

  • SPFD-Based Flexible Transformation of LUT-Based FPGA Circuits

    Katsunori TANAKA  Shigeru YAMASHITA  Yahiko KAMBAYASHI  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E88-A No:4
      Page(s):
    1038-1046

    In this paper, we present the condition for the effective wire addition in Look-Up-Table-based (LUT-based) field programmable gate array (FPGA) circuits, and an optimization procedure utilizing the effective wire addition. Each wire has different characteristics, such as delay and power dissipation. Therefore, the replacement of one critical wire for the circuit performance with many non-critical ones, i.e., many-addition-for-one-removal (m-for-1) is sufficiently useful. However, the conventional logic optimization methods based on sets of pairs of functions to be distinguished (SPFDs) for LUT-based FPGA circuits do not make use of the m-for-1 manipulation, and perform only simple replacement and removal, i.e., the one-addition-for-one-removal (1-for-1) manipulation and the no-addition-for-one-removal (0-for-1) manipulation, respectively. Since each LUT can realize an arbitrary internal function with respect to a specified number of input variables, there is no sufficient condition at the logic design level for simple wire addition. Moreover, in general, simple addition of a wire has no effects for removal of another wire, and it is important to derive the condition for non-simple and effective wire addition. We found the SPFD-based condition that wire addition is likely to make another wire redundant or replaceable, and developed an optimization procedure utilizing this effective wire addition. According to the experimental results, when we focused on the delay reduction of LUT-based FPGA circuits, our method reduced the delay by 24.2% from the initial circuits, while the conventional SPFD-based logic optimization and the enhanced global rewiring reduced it by 14.2% and 18.0%, respectively. Thus, our method presented in this paper is sufficiently practical, and is expected to improve the circuit performance.

  • Clique-Based Architectural Synthesis of Flow-Based Microfluidic Biochips

    Trung Anh DINH  Shigeru YAMASHITA  Tsung-Yi HO  Yuko HARA-AZUMI  

     
    PAPER-High-Level Synthesis and System-Level Design

      Vol:
    E96-A No:12
      Page(s):
    2668-2679

    Microfluidic biochips, also referred to “lab-on-a-chip,” have been recently proposed to integrate all the necessary functions for biochemical analyses. This technology starts a new era of biology science, where a combination of electronic and biology is first introduced. There are several types of microfluidic biochips; among them there has been a great interest in flow-based microfluidic biochips, in which the flows of liquid is manipulated using integrated microvalves. By combining several microvalves, more complex resource units such as micropumps, switches and mixers can be built. For efficient execution, the flows of liquid routes in microfluidic biochips need to be scheduled under some resource constraints and routing constraints. The execution time of a biochemical application depends strongly on the binding and scheduling result. The most previously developed binding and scheduling algorithm is based on heuristics, and there has been no method to obtain optimal results. Considering the above, we propose an optimal method by casting the problem to a clique problem. Moreover, this paper also presents some heuristic techniques for computational time reduction. Experiments demonstrate that the proposed method is able to reduce the execution time of biochemical applications by more than 15% compared with the previous approach. Moreover, the proposed heuristic method is able to produce the results at no or little cost of optimality, in significantly shorter time than the optimal method.

  • Efficient Kernel Generation Based on Implicit Cube Set Representations and Its Applications

    Hiroshi SAWADA  Shigeru YAMASHITA  Akira NAGOYA  

     
    PAPER-Logic Synthesis

      Vol:
    E83-A No:12
      Page(s):
    2513-2519

    This paper presents a new method that efficiently generates all of the kernels of a sum-of-products expression. Its main feature is the memorization of the kernel generation process by using a graph structure and implicit cube set representations. We also show its applications for common logic extraction. Our extraction method produces smaller circuits through several extensions than the extraction method based on two-cube divisors known as best ever.

  • Selective Check of Data-Path for Effective Fault Tolerance

    Tanvir AHMED  Jun YAO  Yuko HARA-AZUMI  Shigeru YAMASHITA  Yasuhiko NAKASHIMA  

     
    PAPER-Design Methodology

      Vol:
    E96-D No:8
      Page(s):
    1592-1601

    Nowadays, fault tolerance has been playing a progressively important role in covering increasing soft/hard error rates in electronic devices that accompany the advances of process technologies. Research shows that wear-out faults have a gradual onset, starting with a timing fault and then eventually leading to a permanent fault. Error detection is thus a required function to maintain execution correctness. Currently, however, many highly dependable methods to cover permanent faults are commonly over-designed by using very frequent checking, due to lack of awareness of the fault possibility in circuits used for the pending executions. In this research, to address the over-checking problem, we introduce a metric for permanent defects, as operation defective probability (ODP), to quantitatively instruct the check operations being placed only at critical positions. By using this selective checking approach, we can achieve a near-100% dependability by having about 53% less check operations, as compared to the ideal reliable method, which performs exhaustive checks to guarantee a zero-error propagation. By this means, we are able to reduce 21.7% power consumption by avoiding the non-critical checking inside the over-designed approach.

  • Quantum Sampling for Balanced Allocations

    Kazuo IWAMA  Akinori KAWACHI  Shigeru YAMASHITA  

     
    PAPER

      Vol:
    E88-D No:1
      Page(s):
    39-46

    It is known that the original Grover Search (GS) can be modified to use a general value for the phase θ of the diffusion transform. Then, if the number of answers is relatively large, this modified GS can find one of the answers with probability one in a single iteration. However, such a quick and error-free GS can only be possible if we can initially adjust the value of θ correctly against the number of answers, and this seems very hard in usual occasions. A natural question now arises: Can we enjoy a merit even if GS is used without such an adjustment? In this paper, we give a positive answer using the balls-and-bins game in which the random sampling of bins is replaced by the quantum sampling, i.e., a single round of modified GS. It is shown that by using the quantum sampling: (i) The maximum load can be improved quadratically for the static model of the game and this improvement is optimal. (ii) That is also improved to O(1) for the continuous model if we have a certain knowledge about the total number of balls in the bins after the system becomes stable.

  • Compaction of Topological Quantum Circuits by Modularization

    Kota ASAI  Shigeru YAMASHITA  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E102-A No:4
      Page(s):
    624-632

    A topological quantum circuit is a representation model for topological quantum computation, which attracts much attention recently as a promising fault-tolerant quantum computation model by using 3D cluster states. A topological quantum circuit can be considered as a set of “loops,” and we can transform the topology of loops without changing the functionality of the circuit if the transformation satisfies certain conditions. Thus, there have been proposed many researches to optimize topological quantum circuits by transforming the topology. There are two directions of research to optimize topological quantum circuits. The first group of research considers so-called a placement and wiring problem where we consider how to place “parts” in a 3D space which corresponds to already optimized sub-circuits. The second group of research focuses on how to optimize the structure and locations of loops in a relatively small circuit which is treated as one part in the above-mentioned first group of research. This paper proposes a new idea for the second group of research; our idea is to consider topological transformations as a placement and wiring problem for modules which we derive from the information how loops are crossed. By using such a formulation, we can use the techniques for placement and wiring problems, and successfully obtain an optimized solution. We confirm by our experiment that our method indeed can reduce the cost much more than the method by Paetznick and Fowler.

  • Mixer-Based Washing Methods for Programmable Microfluidic Devices

    Yifang BAO  Shigeru YAMASHITA  Bing LI  Tsung-Yi HO  

     
    PAPER-VLSI Design Technology and CAD

      Pubricized:
    2022/04/18
      Vol:
    E105-A No:10
      Page(s):
    1385-1391

    When we use a Programmable Microfluidic Device (PMD), we need to wash some contaminated area to use the chip for further experiments. Recently, a novel washing technique called Block-Flushing has been proposed. Block-Flushing washes contaminated area in PMDs by using buffer flows. In Block-Flushing, we need to keep a buffer flow from an input port to an output port of a PMD for a long period to dissolve residual contaminants. Thus, we may need a lot of buffer fluids and washing time even if the contaminated area is small. Another disadvantage of the washing method by Block-Flushing is such that we may not able to clean residual contaminants at valves completely by only buffer flows. To address the above-mentioned issues, this paper proposes a totally new idea to wash PMDs; our method does not use buffer flows, but washes contaminated area by using mixers. By using a mixer, we can dissolve residual contaminants at valves in the area of the mixer very efficiently. In this paper, we propose two methods to wash PMDs by using mixers. The first method can wash the whole chip area by using only four times of a single 2x2-mixer time. We also propose the second method which is a heuristic to reduce the number of moving valves because valves may wear down if they are used many times. We also show some experimental results to confirm that the second method can indeed decrease the number of used valves.

  • An Efficient and Effective Algorithm for Online Task Placement with I/O Communications in Partially Reconfigurable FPGAs

    Mitsuru TOMONO  Masaki NAKANISHI  Shigeru YAMASHITA  Kazuo NAKAJIMA  Katsumasa WATANABE  

     
    PAPER-System Level Design

      Vol:
    E89-A No:12
      Page(s):
    3416-3426

    In a partially reconfigurable FPGA of the future, arbitrary portions of its logic resources and interconnection networks will be reconfigured without affecting the other parts. Multiple tasks will be mapped and executed concurrently in such an FPGA. Efficient execution of the tasks using the limited resources of the FPGA will necessitate effective resource management. A number of online FPGA placement methods have recently been proposed for such an FPGA. However, they cannot handle I/O communications of the tasks. Taking such I/O communications into consideration, we introduce a new approach to online FPGA placement. We present an algorithm for placing each arriving task in an empty area so as to complete all the tasks efficiently. We develop two fitting strategies to effectively handle I/O communications of the tasks. Our experimental results show that properly weighted combinations of these and two other previously proposed strategies enable this algorithm to run very fast and make an effective placement of the tasks. In fact, we show that the overhead associated with the use of this algorithm is negligible as compared to the total execution time of the tasks.

  • Reduction of the Number of FPGA Blocks by Maximizing Flexibility of Internal Functions

    Takenori KOUDA  Shigeru YAMASHITA  Yahiko KAMBAYASHI  

     
    PAPER-Logic Synthesis

      Vol:
    E81-A No:12
      Page(s):
    2554-2562

    In this paper, we will discuss circuit minimization techniques based on the multiple output capability of FPGA blocks. Since previous methods only consider two independent output functions, we will discuss a more complicated case when the two functions are mutually related. We also discuss a method to maximize flexibility of a specified cell output in the given FPGA block. If a set of possible functions for a cell which will not change the FPGA output function is large, we call that the flexibility of this cell is high. The concept of Sets of Pairs of Functions to be Distinguished (SPFDs) introduced by Yamashita et al. is a powerful tool to minimize a given FPGA circuits. In this paper, an extension of the concept, Priority based SPFDs (PSPFDs) is introduced to maximize the flexibility of output functions realized by such internal cells. By using PSPFDs for our new method, we can utilize the multiple output capability very well. Combination with the previous methods with PSPFDs is also shown to be important. We have implemented these methods and applied them to MCNC benchmarks mapped into 5-variable function blocks. To make a comparison with other methods, we have implemented methods using well-known merging algorithms utilizing the same multiple output capability. Experimental results show that our methods can reduce the number of blocks in the initial circuits by 40% on average. This reduction ratio is 16% higher than that of previous methods.

  • A Full-Flexibility-Guaranteed Pin-Count Reduction Design for General-Purpose Digital Microfluidic Biochips

    Trung Anh DINH  Shigeru YAMASHITA  Tsung-Yi HO  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E99-A No:2
      Page(s):
    570-578

    Different from application-specific digital microfluidic biochips, a general-purpose design has several advantages such as dynamic reconfigurability, and fast on-line evaluation for real-time applications. To achieve such superiority, this design typically activates each electrode in the chip using an individual control pin. However, as the design complexity increases substantially, an order-of-magnitude increase in the number of control pins will significantly affect the manufacturing cost. To tackle this problem, several methods adopting a pin-sharing mechanism for general-purpose designs have been proposed. Nevertheless, these approaches sacrifice the flexibility of droplet movement, and result in an increase of bioassay completion time. In this paper, we present a novel pin-count reduction design methodology for general-purpose microfluidic biochips. Distinguished from previous approaches, the proposed methodology not only reduces the number of control pins significantly but also guarantees the full flexibility of droplet movement to ensure the minimal bioassay completion time.

  • A General Framework to Use Various Decomposition Methods for LUT Network Synthesis

    Shigeru YAMASHITA  Hiroshi SAWADA  Akira NAGOYA  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E84-A No:11
      Page(s):
    2915-2922

    This paper presents a new framework for synthesizing look-up table (LUT) networks. Some of the existing LUT network synthesis methods are based on one or two functional (Boolean) decompositions. Our method also uses functional decompositions, but we try to use various decomposition methods, which include algebraic decompositions. Therefore, this method can be thought of as a general framework for synthesizing LUT networks by integrating various decomposition methods. We use a cost database file which is a unique characteristic in our method. We also present comparisons between our method and some well-known LUT network synthesis methods, and evaluate the final results after placement and routing. Although our method is rather heuristic in nature, the experimental results are encouraging.

  • Efficient Methods to Generate Constant SNs with Considering Trade-Off between Error and Overhead and Its Evaluation

    Yudai SAKAMOTO  Shigeru YAMASHITA  

     
    PAPER-Computer System

      Pubricized:
    2019/11/12
      Vol:
    E103-D No:2
      Page(s):
    321-328

    In Stochastic Computing (SC), we need to generate many stochastic numbers (SNs). If we generate one SN conventionally, we need a Stochastic Number Generator (SNG) which consists of a linear-feedback shift register (LFSR) and a comparator. When we calculate an arithmetic function by SC, we need to generate many SNs whose values are equal to constant values used in the arithmetic function. As a consequence, the hardware overhead becomes huge. Accordingly, there has been proposed a method called GMCS (Generating Many Constant SNs from Few SNs) to generate many constant SNs with low hardware overhead. However, if we use GMCS simply, generated constant SNs are correlated highly with each other. This would be a serious problem because the high correlation of SNs make a large error in computation. Therefore, in this paper, we propose efficient methods to generate constant SNs with reasonably low hardware overhead without increasing errors. To reduce the correlations of constant SNs which are generated by GMCS, we use Register based Re-arrangement circuit using a Random bit stream duplicator (RRRD). RRRDs have few influences on the hardware overhead because an RRRD consists of three multiplexers (MUXs) and two 1-bit FFs. We also use a technique to share random number generators with several SNGs to reduce the hardware overhead. We provide some experimental results by which we can confirm that our proposed methods are in general very useful to reduce the hardware overhead for generating constant SNs without increasing errors.

  • Making General Dilution Graphs Robust to Unbalanced-Split Errors on Digital Microfluidic Biochips

    Ikuru YOSHIDA  Shigeru YAMASHITA  

     
    PAPER-VLSI Design Technology and CAD

      Pubricized:
    2022/07/26
      Vol:
    E106-A No:2
      Page(s):
    97-105

    Digital Microfluidic Biochips (DMFBs) can execute biochemical experiments very efficiently, and thus they are drawing attention recently. In biochemical experiments on a DMFB, “sample preparation” is an important task to generate a sample droplet with the desired concentration value. We merge/split droplets in a DMFB to perform sample preparation. When we split a droplet into two droplets, the split cannot be done evenly in some cases. By some unbalanced splits, the generated concentration value may have unacceptable errors. This paper shows that we can decrease the impact of errors caused by unbalanced splits if we duplicate some mixing nodes in a given dilution graph for most cases. We then propose an efficient method to transform a dilution graph in order to decrease the impact of errors caused by unbalanced splits. We also present a preliminary experimental result to show the potential of our method.

  • Reduction of Quantum Cost by Making Temporary Changes to the Function

    Nurul AIN BINTI ADNAN  Shigeru YAMASHITA  Alan MISHCHENKO  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2017/03/23
      Vol:
    E100-D No:7
      Page(s):
    1393-1402

    This paper presents a technique to reduce the quantum cost by making temporary changes to the functionality of a given Boolean function. This technique is one of the very few known methods based on manipulating Exclusive-or Sum-Of-Products (ESOP) expressions to reduce the quantum cost of the corresponding circuit. The idea involves adding Mixed Polarity Multiple-Control Toffoli (MPMCT) gates to temporarily change the functionality of the given function, so that the modified function has a smaller quantum cost. To compensate for the temporary change, additional gates are inserted into the circuit. The proposed method finds a small ESOP expression for the given function, and then finds a good pair of product terms in the ESOP expression so that the quantum cost can be reduced by applying the transformation. The proposed approach is likely to produce a better quantum cost reduction than the existing methods, and indeed experimental results confirm this expectation.

  • Multi-Party Quantum Communication Complexity with Routed Messages

    Seiichiro TANI  Masaki NAKANISHI  Shigeru YAMASHITA  

     
    PAPER

      Vol:
    E92-D No:2
      Page(s):
    191-199

    This paper describes a general quantum lower bounding technique for the communication complexity of a function that depends on the inputs given to two parties connected via paths, which may be shared with other parties, on a network of any topology. The technique can also be employed to obtain a lower-bound of the quantum communication complexity of some functions that depend on the inputs distributed over all parties on the network. As a typical application, we apply our technique to the distinctness problem of deciding whether there are a pair of parties with identical inputs, on a k-party ring; almost matching upper bounds are also given.

  • Quantum Walks on the Line with Phase Parameters

    Marcos VILLAGRA  Masaki NAKANISHI  Shigeru YAMASHITA  Yasuhiko NAKASHIMA  

     
    PAPER

      Vol:
    E95-D No:3
      Page(s):
    722-730

    In this paper, a study on discrete-time coined quantum walks on the line is presented. Clear mathematical foundations are still lacking for this quantum walk model. As a step toward this objective, the following question is being addressed: Given a graph, what is the probability that a quantum walk arrives at a given vertex after some number of steps? This is a very natural question, and for random walks it can be answered by several different combinatorial arguments. For quantum walks this is a highly non-trivial task. Furthermore, this was only achieved before for one specific coin operator (Hadamard operator) for walks on the line. Even considering only walks on lines, generalizing these computations to a general SU(2) coin operator is a complex task. The main contribution is a closed-form formula for the amplitudes of the state of the walk (which includes the question above) for a general symmetric SU(2) operator for walks on the line. To this end, a coin operator with parameters that alters the phase of the state of the walk is defined. Then, closed-form solutions are computed by means of Fourier analysis and asymptotic approximation methods. We also present some basic properties of the walk which can be deducted using weak convergence theorems for quantum walks. In particular, the support of the induced probability distribution of the walk is calculated. Then, it is shown how changing the parameters in the coin operator affects the resulting probability distribution.

  • DDMF: An Efficient Decision Diagram Structure for Design Verification of Quantum Circuits under a Practical Restriction

    Shigeru YAMASHITA  Shin-ichi MINATO  D. Michael MILLER  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E91-A No:12
      Page(s):
    3793-3802

    Recently much attention has been paid to quantum circuit design to prepare for the future "quantum computation era." Like the conventional logic synthesis, it should be important to verify and analyze the functionalities of generated quantum circuits. For that purpose, we propose an efficient verification method for quantum circuits under a practical restriction. Thanks to the restriction, we can introduce an efficient verification scheme based on decision diagrams called Decision Diagrams for Matrix Functions (DDMFs). Then, we show analytically the advantages of our approach based on DDMFs over the previous verification techniques. In order to introduce DDMFs, we also introduce new concepts, quantum functions and matrix functions, which may also be interesting and useful on their own for designing quantum circuits.

1-20hit(29hit)