The search functionality is under construction.

Author Search Result

[Author] Masaki NAKANISHI(12hit)

1-12hit
  • Tensor Rank and Strong Quantum Nondeterminism in Multiparty Communication

    Marcos VILLAGRA  Masaki NAKANISHI  Shigeru YAMASHITA  Yasuhiko NAKASHIMA  

     
    PAPER-Fundamentals of Information Systems

      Vol:
    E96-D No:1
      Page(s):
    1-8

    In this paper we study quantum nondeterminism in multiparty communication. There are three (possibly) different types of nondeterminism in quantum computation: i) strong, ii) weak with classical proofs, and iii) weak with quantum proofs. Here we focus on the first one. A strong quantum nondeterministic protocol accepts a correct input with positive probability and rejects an incorrect input with probability 1. In this work we relate strong quantum nondeterministic multiparty communication complexity to the rank of the communication tensor in the Number-On-Forehead and Number-In-Hand models. In particular, by extending the definition proposed by de Wolf to nondeterministic tensor-rank (nrank), we show that for any boolean function f when there is no prior shared entanglement between the players, 1) in the Number-On-Forehead model the cost is upper-bounded by the logarithm of nrank(f); 2) in the Number-In-Hand model the cost is lower-bounded by the logarithm of nrank(f). Furthermore, we show that when the number of players is o(log log n), we have NQP BQP for Number-On-Forehead communication.

  • Bit Length Optimization of Fractional Part on Floating to Fixed Point Conversion for High-Level Synthesis

    Nobuhiro DOI  Takashi HORIYAMA  Masaki NAKANISHI  Shinji KIMURA  Katsumasa WATANABE  

     
    PAPER-Logic and High Level Synthesis

      Vol:
    E86-A No:12
      Page(s):
    3184-3191

    In the hardware synthesis from a high-level language such as C, the bit length of variables is one of the key issues for the area and speed optimization. Usually, designers are required to optimize the bit-length of each variable manually using the time-consuming simulation on huge-data. In this paper, we propose an optimization method of the fractional bit length in the conversion from floating-point variables to fixed-point variables. The method is based on error propagation and the backward propagation of the accuracy limitation. The method is fully analytical and fast compared to simulation based methods.

  • On the Power of Non-deterministic Quantum Finite Automata

    Masaki NAKANISHI  Takao INDOH  Kiyoharu HAMAGUCHI  Toshinobu KASHIWABARA  

     
    PAPER

      Vol:
    E85-D No:2
      Page(s):
    327-332

    The class NQP was proposed as the class of problems that are solvable by non-deterministic quantum Turing machines in polynomial time. In this paper, we introduce non-deterministic quantum finite automata in which the same non-determinism as in non-deterministic quantum Turing machines is applied. We compare non-deterministic quantum finite automata with the classical counterparts, and show that (unlike the case of classical finite automata) the class of languages recognizable by non-deterministic quantum finite automata properly contains the class of all regular languages.

  • An Efficient and Effective Algorithm for Online Task Placement with I/O Communications in Partially Reconfigurable FPGAs

    Mitsuru TOMONO  Masaki NAKANISHI  Shigeru YAMASHITA  Kazuo NAKAJIMA  Katsumasa WATANABE  

     
    PAPER-System Level Design

      Vol:
    E89-A No:12
      Page(s):
    3416-3426

    In a partially reconfigurable FPGA of the future, arbitrary portions of its logic resources and interconnection networks will be reconfigured without affecting the other parts. Multiple tasks will be mapped and executed concurrently in such an FPGA. Efficient execution of the tasks using the limited resources of the FPGA will necessitate effective resource management. A number of online FPGA placement methods have recently been proposed for such an FPGA. However, they cannot handle I/O communications of the tasks. Taking such I/O communications into consideration, we introduce a new approach to online FPGA placement. We present an algorithm for placing each arriving task in an empty area so as to complete all the tasks efficiently. We develop two fitting strategies to effectively handle I/O communications of the tasks. Our experimental results show that properly weighted combinations of these and two other previously proposed strategies enable this algorithm to run very fast and make an effective placement of the tasks. In fact, we show that the overhead associated with the use of this algorithm is negligible as compared to the total execution time of the tasks.

  • A Fast Quantum Computer Simulator Based on Register Reordering

    Masaki NAKANISHI  Miki MATSUYAMA  Yumi YOKOO  

     
    PAPER-Computer System

      Pubricized:
    2015/11/19
      Vol:
    E99-D No:2
      Page(s):
    332-340

    Quantum computer simulators play an important role when we evaluate quantum algorithms. Quantum computation can be regarded as parallel computation in some sense, and thus, it is suitable to implement a simulator on hardware that can process a lot of operations in parallel. In this paper, we propose a hardware quantum computer simulator. The proposed simulator is based on the register reordering method that shifts and swaps registers containing probability amplitudes so that the probability amplitudes of target basis states can be quickly selected. This reduces the number of large multiplexers and improves clock frequency. We implement the simulator on an FPGA. Experiments show that the proposed simulator has scalability in terms of the number of quantum bits, and can simulate quantum algorithms faster than software simulators.

  • An Exponential Lower Bound on the Size of a Binary Moment Diagram Representing Integer Division

    Masaki NAKANISHI  Kiyoharu HAMAGUCHI  Toshinobu KASHIWABARA  

     
    PAPER

      Vol:
    E82-A No:5
      Page(s):
    756-766

    A binary moment diagram, which was proposed for arithmetic circuit verification, is a directed acyclic graph representing a function from binary-vectors to integers (f : {0,1}n Z). A multiplicative binary moment diagram is an extension of a binary moment diagram with edge weights attached. A multiplicative binary moment diagram can represent addition, multiplication and many other functions with polynomial numbers of vertices. Lower bounds for division, however, had not been investigated. In this paper, we show an exponential lower bound on the number of vertices of a multiplicative binary moment diagram representing a quotient function or a remainder function.

  • Look Up Table Compaction Based on Folding of Logic Functions

    Shinji KIMURA  Atsushi ISHII  Takashi HORIYAMA  Masaki NAKANISHI  Hirotsugu KAJIHARA  Katsumasa WATANABE  

     
    PAPER-Logic Synthesis

      Vol:
    E85-A No:12
      Page(s):
    2701-2707

    The paper describes the folding method of logic functions to reduce the size of memories to keep the functions. The folding is based on the relation of fractions of logic functions. If the logic function includes 2 or 3 same parts, then only one part should be kept and other parts can be omitted. We show that the logic function of 1-bit addition can be reduced to half size using the bit-wise NOT relation and the bit-wise OR relation. The paper also introduces 3-1 LUT's with the folding mechanism. A full adder can be implemented using only one 3-1 LUT with the folding. Multi-bit AND and OR operations can be mapped to our LUT's not using the extra cascading circuit but using the carry circuit for addition. We have also tested the mapping capability of 4 input functions to our 3-1 LUT's with folding and carry propagation mechanisms. We have shown the reduction of the area consumption when using our LUT's compared to the case using 4-1 LUT's on several benchmark circuits.

  • Multi-Party Quantum Communication Complexity with Routed Messages

    Seiichiro TANI  Masaki NAKANISHI  Shigeru YAMASHITA  

     
    PAPER

      Vol:
    E92-D No:2
      Page(s):
    191-199

    This paper describes a general quantum lower bounding technique for the communication complexity of a function that depends on the inputs given to two parties connected via paths, which may be shared with other parties, on a network of any topology. The technique can also be employed to obtain a lower-bound of the quantum communication complexity of some functions that depend on the inputs distributed over all parties on the network. As a typical application, we apply our technique to the distinctness problem of deciding whether there are a pair of parties with identical inputs, on a k-party ring; almost matching upper bounds are also given.

  • Quantum Walks on the Line with Phase Parameters

    Marcos VILLAGRA  Masaki NAKANISHI  Shigeru YAMASHITA  Yasuhiko NAKASHIMA  

     
    PAPER

      Vol:
    E95-D No:3
      Page(s):
    722-730

    In this paper, a study on discrete-time coined quantum walks on the line is presented. Clear mathematical foundations are still lacking for this quantum walk model. As a step toward this objective, the following question is being addressed: Given a graph, what is the probability that a quantum walk arrives at a given vertex after some number of steps? This is a very natural question, and for random walks it can be answered by several different combinatorial arguments. For quantum walks this is a highly non-trivial task. Furthermore, this was only achieved before for one specific coin operator (Hadamard operator) for walks on the line. Even considering only walks on lines, generalizing these computations to a general SU(2) coin operator is a complex task. The main contribution is a closed-form formula for the amplitudes of the state of the walk (which includes the question above) for a general symmetric SU(2) operator for walks on the line. To this end, a coin operator with parameters that alters the phase of the state of the walk is defined. Then, closed-form solutions are computed by means of Fourier analysis and asymptotic approximation methods. We also present some basic properties of the walk which can be deducted using weak convergence theorems for quantum walks. In particular, the support of the induced probability distribution of the walk is calculated. Then, it is shown how changing the parameters in the coin operator affects the resulting probability distribution.

  • Bit-Length Optimization Method for High-Level Synthesis Based on Non-linear Programming Technique

    Nobuhiro DOI  Takashi HORIYAMA  Masaki NAKANISHI  Shinji KIMURA  

     
    PAPER-System Level Design

      Vol:
    E89-A No:12
      Page(s):
    3427-3434

    High-level synthesis is a novel method to generate a RT-level hardware description automatically from a high-level language such as C, and is used at recent digital circuit design. Floating-point to fixed-point conversion with bit-length optimization is one of the key issues for the area and speed optimization in high-level synthesis. However, the conversion task is a rather tedious work for designers. This paper introduces automatic bit-length optimization method on floating-point to fixed-point conversion for high-level synthesis. The method estimates computational errors statistically, and formalizes an optimization problem as a non-linear problem. The application of NLP technique improves the balancing between computational accuracy and total hardware cost. Various constraints such as unit sharing, maximum bit-length of function units can be modeled easily, too. Experimental result shows that our method is fast compared with typical one, and reduces the hardware area.

  • Robust Quantum Algorithms Computing OR with ε-Biased Oracles

    Tomoya SUZUKI  Shigeru YAMASHITA  Masaki NAKANISHI  Katsumasa WATANABE  

     
    PAPER-Quantum Computing

      Vol:
    E90-D No:2
      Page(s):
    395-402

    This paper considers the quantum query complexity of ε-biased oracles that return the correct value with probability only 1/2 + ε. In particular, we show a quantum algorithm to compute N-bit OR functions with O(/ε) queries to ε-biased oracles. This improves the known upper bound of O(/ε2) and matches the known lower bound; we answer the conjecture raised by the paper [1] affirmatively. We also show a quantum algorithm to cope with the situation in which we have no knowledge about the value of ε. This contrasts with the corresponding classical situation, where it is almost hopeless to construct a bounded error algorithm without knowing the value of ε.

  • Expressive Power of Quantum Pushdown Automata with Classical Stack Operations under the Perfect-Soundness Condition

    Masaki NAKANISHI  Kiyoharu HAMAGUCHI  Toshinobu KASHIWABARA  

     
    PAPER-Computation and Computational Models

      Vol:
    E89-D No:3
      Page(s):
    1120-1127

    One important question for quantum computing is whether a computational gap exists between models that are allowed to use quantum effects and models that are not. Several types of quantum computation models have been proposed, including quantum finite automata and quantum pushdown automata (with a quantum pushdown stack). It has been shown that some quantum computation models are more powerful than their classical counterparts and others are not since quantum computation models are required to obey such restrictions as reversible state transitions. In this paper, we investigate the power of quantum pushdown automata whose stacks are assumed to be implemented as classical devices, and show that they are strictly more powerful than their classical counterparts under the perfect-soundness condition, where perfect-soundness means that an automaton never accepts a word that is not in the language. That is, we show that our model can simulate any probabilistic pushdown automata and also show that there is a non-context-free language which quantum pushdown automata with classical stack operations can recognize with perfect soundness.