The search functionality is under construction.

Author Search Result

[Author] Tomoya SUZUKI(2hit)

1-2hit
  • Weight Compression MAC Accelerator for Effective Inference of Deep Learning Open Access

    Asuka MAKI  Daisuke MIYASHITA  Shinichi SASAKI  Kengo NAKATA  Fumihiko TACHIBANA  Tomoya SUZUKI  Jun DEGUCHI  Ryuichi FUJIMOTO  

     
    PAPER-Integrated Electronics

      Pubricized:
    2020/05/15
      Vol:
    E103-C No:10
      Page(s):
    514-523

    Many studies of deep neural networks have reported inference accelerators for improved energy efficiency. We propose methods for further improving energy efficiency while maintaining recognition accuracy, which were developed by the co-design of a filter-by-filter quantization scheme with variable bit precision and a hardware architecture that fully supports it. Filter-wise quantization reduces the average bit precision of weights, so execution times and energy consumption for inference are reduced in proportion to the total number of computations multiplied by the average bit precision of weights. The hardware utilization is also improved by a bit-parallel architecture suitable for granularly quantized bit precision of weights. We implement the proposed architecture on an FPGA and demonstrate that the execution cycles are reduced to 1/5.3 for ResNet-50 on ImageNet in comparison with a conventional method, while maintaining recognition accuracy.

  • Robust Quantum Algorithms Computing OR with ε-Biased Oracles

    Tomoya SUZUKI  Shigeru YAMASHITA  Masaki NAKANISHI  Katsumasa WATANABE  

     
    PAPER-Quantum Computing

      Vol:
    E90-D No:2
      Page(s):
    395-402

    This paper considers the quantum query complexity of ε-biased oracles that return the correct value with probability only 1/2 + ε. In particular, we show a quantum algorithm to compute N-bit OR functions with O(/ε) queries to ε-biased oracles. This improves the known upper bound of O(/ε2) and matches the known lower bound; we answer the conjecture raised by the paper [1] affirmatively. We also show a quantum algorithm to cope with the situation in which we have no knowledge about the value of ε. This contrasts with the corresponding classical situation, where it is almost hopeless to construct a bounded error algorithm without knowing the value of ε.