The search functionality is under construction.

Keyword Search Result

[Keyword] BER(1214hit)

281-300hit(1214hit)

  • Optical Waveguide Theory by the Finite Element Method Open Access

    Masanori KOSHIBA  

     
    INVITED PAPER

      Vol:
    E97-C No:7
      Page(s):
    625-635

    Recent progress in research on the finite element method (FEM) for optical waveguide design and analysis is reviewed, focusing on the author's works. After briefly reviewing fundamentals of FEM such as a theoretical framework, a conventional nodal element, a newly developed edge element to eliminate nonphysical, spurious solutions, and a perfectly matched layer to avoid undesirable reflections from computational window edges, various FEM techniques for a guided-mode analysis, a beam propagation analysis, and a waveguide discontinuity analysis are described. Some design examples are introduced, including current research activities on multi-core fibers.

  • Performance Analysis of CPML for the Compact 2-D FDTD method in Cylindrical Coordinate System

    Yasuo OHTERA  Haruka HIROSE  Hirohito YAMADA  

     
    PAPER

      Vol:
    E97-C No:7
      Page(s):
    653-660

    Performance suveyrance of CPML (Convolutional PML) for FDTD (Finite-Difference Time-Domain) method in cylindrical coordinate system was carried out. The CPML was placed perpendicularly to the radial axis and designed to absorb diverging or converging waves. To be able to analyze microstructured optical fibers and disk/ring resonators we introduced finite axial wavenumbers into the FDTD formulation. We investigated the dependence of reflectivity upon CPML's constituteve parameters such as $kappa$ and $sigma$ for various curvature radii and the axial wavenumbers. As a result of evaluation we found that the reflectivity gradually increased togather with the increase of the wavenumber. We also confirmed that the absorption performance was of the similar order for the converging waves and the diverging ones provided that their curvature radii were the same.

  • A Switchable Microwave Reflector Using Pin Diodes

    Shinya KITAGAWA  Ryosuke SUGA  Osamu HASHIMOTO  

     
    PAPER

      Vol:
    E97-C No:7
      Page(s):
    683-688

    A switchable microwave reflector, reflection of which is actively controlled using diodes was proposed. Pin diodes have large resistance and capacitance without DC bias and small resistance and inductance with DC bias in microwave band. The reflector was designed by using the characteristics. In this paper, effects of a periodic structure on the reflector were verified with simulation and equivalent circuit model. A prototype reflector was able to switch between about $-20$ dB and $-0.1$ dB reflection coefficient at 2 GHz.

  • Phased Array Antenna Beam Steering Scheme for Future Wireless Access Systems Using Radio-over-Fiber Technique

    Masayuki OISHI  Yoshihiro NISHIKAWA  Kosuke NISHIMURA  Keiji TANAKA  Shigeyuki AKIBA  Jiro HIROKAWA  Makoto ANDO  

     
    PAPER

      Vol:
    E97-B No:7
      Page(s):
    1281-1289

    This paper proposes a simple and practical scheme to decide the direction of a phased array antenna beam in wireless access systems using Radio-over-Fiber (RoF) technique. The feasibility of the proposed scheme is confirmed by the optical and wireless transmission experiments using 2GHz RoF signals. In addition, two-dimensional steering operation in the millimeter-wave band is demonstrated for targeting future high-speed wireless communication systems. The required system parameters for practical use are also provided by investigating the induced transmission penalties. The proposed detection scheme is applicable to two-dimensional antenna beam steering in the millimeter-wave band by properly designing the fiber length and wavelength variable range.

  • Petabit/s Optical Transmission Using Multicore Space-Division-Multiplexing Open Access

    Hidehiko TAKARA  Tetsuo TAKAHASHI  Kazuhide NAKAJIMA  Yutaka MIYAMOTO  

     
    INVITED PAPER

      Vol:
    E97-B No:7
      Page(s):
    1259-1264

    The paper presents ultra-high-capacity transmission technologies based on multi-core space-division-multiplexing. In order to realize high-capacity multi-core fiber (MCF) transmission, investigation of low crosstalk fiber and connection technology is important, and high-density signal generation using multilevel modulation and crosstalk management are also key technologies. 1Pb/s multi-core fiber transmission experiment using space-division-multiplexing is also described.

  • E- and W-Band High-Capacity Hybrid Fiber-Wireless Links

    J. J. VEGAS OLMOS  X. PANG  I. TAFUR MONROY  

     
    PAPER

      Vol:
    E97-B No:7
      Page(s):
    1290-1294

    In this paper we summarize the work conducted in our group in the area of E- and W-band optical high-capacity fiber-wireless links. We present performance evaluations of E- and W-band mm-wave signal generation using photonic frequency upconversion employing both VCSELs and ECLs, along with transmission over different type of optical fibers and for a number of values for the wireless link distance. Hybrid wireless-optical links can be composed of mature and resilient technology available off-the-shelf, and provide functionalities that can add value to optical access networks, specifically in mobile backhaul/fronthaul applications, dense distributed antenna systems and fiber-over-radio scenarios.

  • Channel-Adaptive Detection Scheme Based on Threshold in MIMO-OFDM Systems

    Seung-Jun YU  Jang-Kyun AHN  Hyoung-Kyu SONG  

     
    LETTER-Fundamentals of Information Systems

      Vol:
    E97-D No:6
      Page(s):
    1644-1647

    In this letter, an improved channel-adaptive detection scheme based on condition number combined with a QRD-M and CLLL algorithms is presented for MIMO-OFDM systems. The proposed scheme estimates the channel state by using the condition number and then the number of layers for the QRD-M is changed according to the condition number of channel. After the number of layers is determined, the proposed scheme performs the combined QRD-M and CLLL. Simulation results show that the BER curves of the proposed scheme and QRD-M using CLLL have similar performance. However, the complexity of the proposed scheme is about 27% less than QRD-M detection using CLLL.

  • Behavior of Inter-Core Crosstalk as a Noise and Its Effect on Q-Factor in Multi-Core Fiber

    Tetsuya HAYASHI  Takashi SASAKI  Eisuke SASAOKA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E97-B No:5
      Page(s):
    936-944

    The stochastic behavior of inter-core crosstalk in multi-core fiber is discussed based on a theoretical model validated by measurements, and the effect of the crosstalk on the Q-factor in transmission systems, using multi-core fiber is investigated theoretically. The measurements show that the crosstalk rapidly changes with wavelength, and gradually changes with time, in obedience to the Gaussian distribution in I-Q planes. Therefore, the behavior of the crosstalk as a noise may depend on the bandwidth of the signal light. If the bandwidth is adequately broad, the crosstalk may behave as a virtual additive white Gaussian noise on I-Q planes, and the Q-penalty at the Q-factor of 9.8dB is less than 1dB when the statistical mean of the crosstalk from other cores is less than -16.7dB for PDM-QPSK, -23.7dB for PDM-16QAM, and -29.9dB for PDM-64QAM. If the bandwidth is adequately narrow, the crosstalk may behave as virtually static coupling that changes very gradually with time and heavily depends on the wavelength. To cope with a static crosstalk much higher than its statistical mean, a margin of several decibels from the mean crosstalk may be necessary for suppressing Q-penalty in the case of adequately narrow bandwidth.

  • An Efficient Strategy for Bit-Quad-Based Euler Number Computing Algorithm

    Bin YAO  Hua WU  Yun YANG  Yuyan CHAO  Atsushi OHTA  Haruki KAWANAKA  Lifeng HE  

     
    LETTER-Pattern Recognition

      Vol:
    E97-D No:5
      Page(s):
    1374-1378

    The Euler number of a binary image is an important topological property for pattern recognition, and can be calculated by counting certain bit-quads in the image. This paper proposes an efficient strategy for improving the bit-quad-based Euler number computing algorithm. By use of the information obtained when processing the previous bit quad, the number of times that pixels must be checked in processing a bit quad decreases from 4 to 2. Experiments demonstrate that an algorithm with our strategy significantly outperforms conventional Euler number computing algorithms.

  • Asymmetric Sparse Bloom Filter

    MyungKeun YOON  JinWoo SON  Seon-Ho SHIN  

     
    PAPER-Internet

      Vol:
    E97-B No:4
      Page(s):
    765-772

    We propose a new Bloom filter that efficiently filters out non-members. With extra bits assigned and asymmetrically distributed, the new filter reduces hash computations and memory accesses. For an error rate of 10-6, the new filter reduces cost by 31.31% with 4.33% additional space, while the standard method saves offers a 20.42% reduction.

  • Online Inference of Mixed Membership Stochastic Blockmodels for Network Data Streams Open Access

    Tomoki KOBAYASHI  Koji EGUCHI  

     
    PAPER

      Vol:
    E97-D No:4
      Page(s):
    752-761

    Many kinds of data can be represented as a network or graph. It is crucial to infer the latent structure underlying such a network and to predict unobserved links in the network. Mixed Membership Stochastic Blockmodel (MMSB) is a promising model for network data. Latent variables and unknown parameters in MMSB have been estimated through Bayesian inference with the entire network; however, it is important to estimate them online for evolving networks. In this paper, we first develop online inference methods for MMSB through sequential Monte Carlo methods, also known as particle filters. We then extend them for time-evolving networks, taking into account the temporal dependency of the network structure. We demonstrate through experiments that the time-dependent particle filter outperformed several baselines in terms of prediction performance in an online condition.

  • Comprehensive Performance Analysis of Two-Way Multi-Relay System with Amplify-and-Forward Relaying

    Siye WANG  Yanjun ZHANG  Bo ZHOU  Wenbiao ZHOU  Dake LIU  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:3
      Page(s):
    666-673

    In this paper, we consider a two-way multi-relay scenario and analyze the bit error rate (BER) and outage performance of an amplify-and-forward (AF) relaying protocol. We first investigate the bit error probability by considering channel estimation error. With the derivation of effective signal-to-noise ratio (SNR) at the transceiver and its probability density function (PDF), we can obtain a closed form formulation of the total average error probability of two-way multi-relay system. Furthermore, we also derive exact expressions of the outage probability for two-way relay through the aid of a modified Bessel function. Finally, numerical experiments are performed to verify the analytical results and show that our theoretical derivations are exactly matched with simulations.

  • Networked Control System with Delay Adaptive Cyber-Physical Integration

    Chao ZHANG  Jialuo XIAO  

     
    LETTER-Systems and Control

      Vol:
    E97-A No:3
      Page(s):
    873-876

    A Networked Control System (NCS) can be considered a form of Cyber-Physical System (CPS) with its network architecture and typical features, such as delay, jitter and package loss. So far, less discussion has been carried out for NCS from the view point of CPS. In this letter, the NCS with short delay is analyzed with cyber-physical integration. The sampling rate is depicted as one of the states in the state equations. The simulation results show that the cyber-physical integration not only adjusts the sampling rate to the states of the controlled physical system, but also adapts to the delay of the network. The averaged sampling rate and the stabilization time are smaller compared with the traditional NCS.

  • Unsupervised Speckle Level Estimation of SAR Images Using Texture Analysis and AR Model

    Bin XU  Yi CUI  Guangyi ZHOU  Biao YOU  Jian YANG  Jianshe SONG  

     
    PAPER-Sensing

      Vol:
    E97-B No:3
      Page(s):
    691-698

    In this paper, a new method is proposed for unsupervised speckle level estimation in synthetic aperture radar (SAR) images. It is assumed that fully developed speckle intensity has a Gamma distribution. Based on this assumption, estimation of the equivalent number of looks (ENL) is transformed into noise variance estimation in the logarithmic SAR image domain. In order to improve estimation accuracy, texture analysis is also applied to exclude areas where speckle is not fully developed (e.g., urban areas). Finally, the noise variance is estimated by a 2-dimensional autoregressive (AR) model. The effectiveness of the proposed method is verified with several SAR images from different SAR systems and simulated images.

  • Voting Sharing: An Approach to Reducing Computation Time for Fault Diagnosis in Time-Triggered Systems

    Kohei SAKURAI  Masahiro MATSUBARA  Tatsuhiro TSUCHIYA  

     
    LETTER-Information Network

      Vol:
    E97-D No:2
      Page(s):
    344-348

    We propose a lightweight scheme for fault diagnosis in time-triggered (TT) systems. An existing scheme is preferable in its capability but incurs computation time that can be prohibitively large for some real-time systems, such as automotive control systems. Our proposed scheme, which we call voting sharing, can substantially reduce the computation time by sharing the diagnosis result obtained by each node with all nodes in the system. We clarify the properties of the voting sharing scheme with respect to fault tolerance and show some experimental results.

  • A Novel Fiber-Optic Light Concentrator with Scattering Parts

    Makoto TSUBOKAWA  Shinjo TATEYAMA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E97-C No:2
      Page(s):
    93-100

    We have designed a novel fiber-optic light concentrator with scattering layers and evaluated the light concentration characteristics by ray-trace simulations as functions of the parameters of the incident light angle and wavelength, as well as the waveguide structure. Unlike well-known luminescent solar concentrators, in our models, illuminating light is directly captured through the proposed waveguide structure. The optical efficiency in our fiber-optic models is remarkably improved in long-length regions compared with that in simple slab waveguides. In addition, the waveguide length required to effectively collect light is extended to 300mm and 1.5m for optical fibers with 1- and 10-mm core diameters, respectively, which are ten times longer than those in slab waveguides with an equivalent scale. Because of the cylindrical structure of optical fibers, we have also evaluated the sensitivity of our models to surrounding light. Consequently, an obvious directional property containing single or three peaks of the sensitivity is clarified, and their widths can be tuned by changing the width of the scattering parts. These results suggest that our models are suited for sensor devices such as optical receiving antennas, rather than simple light concentrators. Finally, we model a fiber-optic probe as an application and evaluate the light concentration characteristics when the concentrator is serially concatenated with a normal optical fiber.

  • Cross-Talk with Fluctuation in Heterogeneous Multicore Fibers

    Takeshi SUGIMORI  Katsunori IMAMURA  Ryuichi SUGIZAKI  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E97-B No:1
      Page(s):
    40-48

    Prediction of cross-talk is an important facet of multicore fiber (MCF) design. Several approaches for estimating cross-talk in MCF have been proposed but none are faultless, especially when applied to MCF with heterogeneous cores. We propose a new calculation approach that attempts to solve this problem. In our approach, cross-talk in multicore fibers is estimated by coupled power theory. The coefficients in the coupled power equation are theoretically calculated by the central limit theorem and by quantum mechanical time-dependent perturbations. The results from our calculations agree with those of Monte Carlo simulations of heterogeneous MCFs.

  • Unified Coprocessor Architecture for Secure Key Storage and Challenge-Response Authentication

    Koichi SHIMIZU  Daisuke SUZUKI  Toyohiro TSURUMARU  Takeshi SUGAWARA  Mitsuru SHIOZAKI  Takeshi FUJINO  

     
    PAPER-Hardware Based Security

      Vol:
    E97-A No:1
      Page(s):
    264-274

    In this paper we propose a unified coprocessor architecture that, by using a Glitch PUF and a block cipher, efficiently unifies necessary functions for secure key storage and challenge-response authentication. Based on the fact that a Glitch PUF uses a random logic for the purpose of generating glitches, the proposed architecture is designed around a block cipher circuit such that its round functions can be shared with a Glitch PUF as a random logic. As a concrete example, a circuit structure using a Glitch PUF and an AES circuit is presented, and evaluation results for its implementation on FPGA are provided. In addition, a physical random number generator using the same circuit is proposed. Evaluation results by the two major test suites for randomness, NIST SP 800-22 and Diehard, are provided, proving that the physical random number generator passes the test suites.

  • Manufacture and Performance of a 60GHz-Band High-Efficiency Antenna with a Thick Resin Layer and the Feed through a Hole in a Silicon Chip

    Jun ASANO  Jiro HIROKAWA  Hiroshi NAKANO  Yasutake HIRACHI  Hiroshi ISONO  Atsushi ISHII  Makoto ANDO  

     
    PAPER-Antennas and Propagation

      Vol:
    E96-B No:12
      Page(s):
    3108-3115

    As a first step towards the realization of high-efficiency on-chip antennas for 60GHz-band wireless personal area networks, this paper proposes the fabrication of a patch antenna placed on a 200µm thick dielectric resin and fed through a hole in a silicon chip. Despite the large tan δ of the adopted material (0.015 at 50GHz), the thick resin reduces the conductor loss at the radiating element and a radiation efficiency of 78%, which includes the connecting loss from the bottom is predicted by simulation. This calculated value is verified in the millimeter-wave band by experiments in a reverberation chamber. Six stirrers are installed, one on each wall in the chamber, to create a statistical Rayleigh environment. The manufactured prototype antenna with a test jig demonstrates the radiation efficiency of 75% in the reverberation chamber. This agrees well with the simulated value of 76%, while the statistical measurement uncertainty of our handmade reverberation chamber is calculated as ±0.14dB.

  • Asterisk and Star 16-QAM Golay Complementary Sequence Mates

    Fanxin ZENG  Xiaoping ZENG  Zhenyu ZHANG  Guixin XUAN  

     
    LETTER-Information Theory

      Vol:
    E96-A No:11
      Page(s):
    2294-2298

    In an orthogonal frequency division multiplexing (OFDM) communication system, two users use the same frequencies and number of sub-carriers so as to increase spectrum efficiency. When the codewords employed by them form a Golay complementary sequence (CS) mate, this system enjoys the upper bound of peak-to-mean envelope power ratio (PMEPR) as low as 4. This letter presents a construction method for producing S16-QAM and A16-QAM Golay CS mates, which arrives at the upper bound 4 of PMEPR. And when used as a Golay CS pair, they have an upper bound 2 of PMEPR, which is the same ones in both [18] and [17]. However, both cannot produce such mates.

281-300hit(1214hit)