The search functionality is under construction.

Author Search Result

[Author] Ryosuke SUGA(13hit)

1-13hit
  • Design of Ultra-Thin Wave Absorber with Square Patch Array Considering Electromagnetic Coupling between Patch Array and Back-Metal

    Sota MATSUMOTO  Ryosuke SUGA  Kiyomichi ARAKI  Osamu HASHIMOTO  

     
    BRIEF PAPER-Electromagnetic Theory

      Pubricized:
    2021/06/07
      Vol:
    E104-C No:12
      Page(s):
    681-684

    In this paper, an ultra-thin wave absorber using a resistive patch array closely-placed in front of a back-metal is designed. The positively large susceptance is required for the patch array to cancel out the negatively large input susceptance of the short-circuited ultra-thin spacer behind the array. It is found that the array needs the gap of 1mm, sheet resistance of less than 20Ω/sq. and patch width of more than 15mm to obtain the zero input susceptance of the absorber with the 1/30 wavelength spacer. Moreover, these parameters were designed considering the electromagnetic coupling between the array and back-metal, and the square patch array absorbers with the thickness from 1/30 to 1/150 wavelength were designed.

  • Improvement on Uneven Heating in Microwave Oven by Diodes-Loaded Planar Electromagnetic Field Stirrer

    Ryosuke SUGA  Naruki SAITO  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2020/03/30
      Vol:
    E103-C No:9
      Page(s):
    388-395

    A planar electromagnetic field stirrer with periodically arranged metal patterns and diode switches is proposed for improving uneven heating of a heated object placed in a microwave oven. The reflection phase of the proposed stirrer changes by switching the states of diodes mounted on the stirrer and the electromagnetic field in the microwave oven is stirred. The temperature distribution of a heated object located in a microwave oven was simulated and measured using the stirrer in order to evaluate the improving effect of the uneven heating. As the result, the heated parts of the objects were changed with the diode states and the improving effect of the uneven heating was experimentally indicated.

  • Shape Measurement of Canned Food to Verify Hermetic Sealing

    Ryosuke SUGA  Shigenori TAKANO  Takenori YASUZUMI  Taichi IJUIN  Tetsuya TAKATOMI  Osamu HASHIMOTO  

     
    BRIEF PAPER

      Vol:
    E95-C No:10
      Page(s):
    1662-1665

    A can swells due to gas produced from an inner food caused by poor hermetic sealing of the can. This paper presents a measurement for the bottom shape to detect a swelled can by using the millimeter-wave imaging. For get higher spatial resolution and an adjustable focal distance, two collimated beam lenses were applied to the measurement system. First, a configuration of the system was studied with the electrical field intensity and focal distance by using full wave electromagnetic simulation. Next, the bottom shapes of cans with different pressure were evaluated quantitatively using the system. A shape change of 0.5 mm was detected with pressure difference of 50 kPa, and it is reasonable considering actual dimension of the can shape. A potential of the proposed detection method was presented.

  • Hybrid Electromagnetic Simulation Using 2D-FDTD and Ray-Tracing Methods for Airport Surfaces

    Ryosuke SUGA  Megumi WATANABE  Atsushi KEZUKA  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2023/06/05
      Vol:
    E106-C No:11
      Page(s):
    774-779

    In this paper, a hybrid electromagnetic simulation method of two-dimensional FDTD and ray-tracing methods suitable for an airport surface was proposed. The power variation due to ground reflection, refraction and creeping is calculated by two-dimensional FDTD method and ray-tracing method is used to calculate the reflecting and diffracted powers from buildings. The proposed approach was validated by measurement using a 1/50 scale-model of an airport model with a building model in various positions at 5 GHz. The proposed method allowed measured power distributions to correlate with simulated figures to within 4.8 dB and their null positions were also estimated to an error tolerance of within 0.01 m.

  • A Switchable Microwave Reflector Using Pin Diodes

    Shinya KITAGAWA  Ryosuke SUGA  Osamu HASHIMOTO  

     
    PAPER

      Vol:
    E97-C No:7
      Page(s):
    683-688

    A switchable microwave reflector, reflection of which is actively controlled using diodes was proposed. Pin diodes have large resistance and capacitance without DC bias and small resistance and inductance with DC bias in microwave band. The reflector was designed by using the characteristics. In this paper, effects of a periodic structure on the reflector were verified with simulation and equivalent circuit model. A prototype reflector was able to switch between about $-20$ dB and $-0.1$ dB reflection coefficient at 2 GHz.

  • Multi-Layered Translucent Wave Absorber Using Carbon Fibers and Applying to Portable Anechoic Chamber

    Takenori YASUZUMI  Shunki KATO  Yuya ISHII  Ryosuke SUGA  Osamu HASHIMOTO  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E95-B No:12
      Page(s):
    3830-3836

    A new wideband wave absorber with translucent structure using carbon fibers is presented in this paper. The absorber is composed of bundled short carbon fibers which are arranged in front of a back metal and a spacer. Absorption characteristics of the one-layered absorber showed that matching frequencies can be controlled by the thickness of the spacer and the length of the carbon fibers. To further improve the characteristics, multi-layered absorbers are designed with the same procedure as one-layered absorber. The designed absorber showed 15 dB absorption characteristics from 1.0 to 10.0 GHz. Then a small anechoic chamber with the inside dimension of 200 cm200 cm200 cm was fabricated using ninety-six proposed absorbers. The electrical power in the chamber was measured at 2.45 GHz and the results showed that the variation of the power was less than 4 dB inside a circle with radius of 60 cm as work space for electromagnetic measurements.

  • Study on RCS Reduction of Patch Array Using Switchable Absorption/Transmission Surface

    Shinya KITAGAWA  Ryosuke SUGA  Osamu HASHIMOTO  Kiyomichi ARAKI  

     
    BRIEF PAPER

      Vol:
    E99-C No:7
      Page(s):
    805-808

    Radar cross section (RCS) of a patch array antenna is reduced using a switchable absorption/transmission surface. The switchable surface performs as between a radar absorber and transmission surface using diodes at 9GHz. The switchable surface was applied to the radome of a patch array and its radiation pattern and RCS reduction were evaluated. The gain and the radiation pattern with the radome was equivalent to that without the radome. The RCS reduction with the radome was 25dB compared to that without the radome.

  • Dual-Polarization RCS Reduction of X-Band Antenna Using Switchable Reflector

    Shinya KITAGAWA  Ryosuke SUGA  Kiyomichi ARAKI  Osamu HASHIMOTO  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E98-C No:7
      Page(s):
    701-708

    Vertical- and horizontal-polarization RCS of a dipole antenna was reduced using a switchable reflector. The switchable reflector can switch reflection level for the vertical-polarization and have absorption for the horizontal-polarization. The reflection level of the reflector for the vertical-polarization can be switched using pin diodes and the reflection for the horizontal-polarization can be reduced using resistor on the surface. The switchable reflector was designed to operate at 9 GHz and fabricated. The vertical-polarized reflection coefficient was switched -28 dB with OFF-state diodes and -0.7 dB with ON-state diodes, and horizontal-polarized one was less than -18 dB at 9 GHz. The reflector with ON-state diodes was applied to an antenna reflector of a dipole antenna and comparable radiation pattern to that with a metal reflector was obtained at 9 GHz. Moreover the reflector with OFF-state diodes was applied to the reflector of the dipole antenna and the RCS of the dipole antenna was reduced 18 dB for the vertical-polarization and 16 dB for the horizontal-polarization. Therefore the designed switchable reflector can contribute to antenna RCS reduction for dual-polarization at the operating frequency without degrading antenna performance.

  • Mutual Coupling Reduction between Closely-Placed MSAs for Bi-Static Radar Using Wave Absorber

    Takenori YASUZUMI  Koudai TAKAHASHI  Naoki SANO  Ryosuke SUGA  Osamu HASHIMOTO  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E96-C No:1
      Page(s):
    77-83

    This paper presents a new simple method for reducing mutual coupling between dual-element microstrip antennas (MSAs) for bistatic radar using a wave absorber. The two elements are closely placed on a substrate by the distance of λ0/4 through the wall-shaped absorber. The height and width of the absorber were optimized for minimum mutual coupling with the electromagnetic simulator. It was found that less than -60 dB minimum mutual coupling can be achieved by the impedance matching of the absorber in a near field. The influence for the reflection characteristics from the absorber is small enough, and the reduction of the antenna gain is only 1.1 dB. The rate of the lost power characteristics showed that the absorption improves the mutual couplings. Then the proposed structure for a practical configuration was investigated. The measurement results of the optimized structure tallied well with the simulation results.

  • Winding Ratio Design of Transformer in Equivalent Circuit of Circular Patch Array Absorber

    Ryosuke SUGA  Tomohiko NAKAMURA  Daisuke KITAHARA  Kiyomichi ARAKI  Osamu HASHIMOTO  

     
    BRIEF PAPER

      Vol:
    E101-C No:8
      Page(s):
    651-654

    An equivalent circuit of a circular patch array absorber has been proposed, however the method to identify a winding ratio of a transformer in its circuit have never been reported. In this paper, it is indicated that the ratio is proportionate to the area ratio between patch and unit cell of the absorber, and the design method of the winding ratio is proposed. The winding ratio derived by the proposed method is agreed well with that by using electromagnetic simulator within 3% error. Moreover, the operating frequency and 15 dB bandwidth of the fabricated absorber designed by proposed method are agreed with those derived by the circuit simulation within 0.4% and 0.1% errors. Thus the validity of the proposed method is verified.

  • A Simple and Compact Planar Balun with Slit Ground

    Ryosuke SUGA  Kazuto OSHIMA  Tomoki UWANO  

     
    BRIEF PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2021/04/09
      Vol:
    E104-C No:11
      Page(s):
    667-671

    In this paper, a planar balun having simple and compact features with slit ground was proposed. The operating frequency can be designed by the length and position of the defected ground slits. The 20 dB bandwidth of the common mode rejection ratio of the measuring balun was over 90%.

  • Validation Measurement of Hybrid Propagation Analysis Suitable for Airport Surface in VHF Band and Its Application to Realistic Situations

    Ryosuke SUGA  Satoshi KURODA  Atsushi KEZUKA  

     
    PAPER

      Pubricized:
    2020/04/10
      Vol:
    E103-C No:11
      Page(s):
    582-587

    Authors had proposed a hybrid electromagnetic field analysis method suitable for an airport surface so far. In this paper, the hybrid method is validated by measurements by using a 1/50 scale-model of an airport considering several layouts of the buildings and sloping ground. The measured power distributions agreed with the analyzed ones within 5 dB errors excepting null points and the null positions of the distribution is also estimated within one wavelength errors.

  • Miniaturization of Parallel-Plate Lens Antenna for Evaluation of Wave Absorber Placed on Ceiling of ETC Gate Open Access

    Takenori YASUZUMI  Nayuta KAMIYA  Ryosuke SUGA  Osamu HASHIMOTO  Yukinori MATSUSHITA  Yasuyuki MATSUDA  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E95-B No:10
      Page(s):
    3225-3231

    This paper presents a compact metal plate lens antenna for evaluating a wave absorber placed on ceiling of the ETC gate. The focal distance of the lens was derived to be 129 cm by the geometrical optics procedure. By arranging the lens in front of a horn antenna, the gain and beamwidth characteristics were improved from 18 dBi to 26 dBi and from 22 degrees to 7 degrees, respectively. Then the antenna characteristics were evaluated when the distance between the antenna and the lens was changed in order to miniaturize the lens antenna. As the result, the changes in beamwidth were held to within 1 dB when the lens came close to the horn antenna. Scattering, phase and electric field intensity of electromagnetic wave were evaluated to clarify the foundation of the given characteristics. It was found that the field intensity for the miniaturized lens antenna is stronger than that for GO designed one though the phase uniformity is worse. The distance between the horn antenna and lens can be reduced to 80 cm. The absorption characteristics for the arranged absorbers which have different absorptions were measured, and it was shown that the proposed method was suitable for specifying the deteriorated absorber in the ETC system.