The search functionality is under construction.

Author Search Result

[Author] Masanobu HIROSE(9hit)

1-9hit
  • Pulse Compression Subsurface Radar

    Ikuo ARAI  Yoshiyuki TOMIZAWA  Masanobu HIROSE  

     
    INVITED PAPER

      Vol:
    E83-B No:9
      Page(s):
    1930-1937

    The application of subsurface radar using electromagnetic waves in the VHF band is wide and includes surveying voids under the ground and archaeological prospecting. To achieve a wider application range, the survey depth must be deeper. In this paper, a method of pulse compression using a chirp signal as one of the methods to fulfill this requirement is described, and its advantages and problems are discussed. First, a delay correlation method is proposed as a processing method of pulse compression. It converts RF band chirp signal directly into a pulse. Moreover, the method improves the S/N ratio by over 40 dB compared with conventional pulse radar. Therefore, it has the same detection ability as conventional pulse radar even though it uses less transmitting power. Next, the influences of RF amplifier saturation and underground propagation characteristics on the chirp signal are discussed; both are shown to have little influence on the detection ability of the method.

  • A Novel Subsurface Radar Using a Short Chirp Signal to Expand the Detection Range

    Yoshiyuki TOMIZAWA  Masanobu HIROSE  Ikuo ARAI  Kazuo TANABE  

     
    PAPER-Sensing

      Vol:
    E83-B No:10
      Page(s):
    2427-2434

    The use of a chirp signal is one of the methods to expand the detection range in subsurface radar. However, the presence of time-sidelobes after a conventional pulse-compression makes the detection range degraded because weak signals from underground objects are covered with a large time-sidelobe due to a ground surface reflection. In this paper, we propose a new pulse compression subsurface radar using a short chirp signal in which the echoes from the ground surface and the object are not overlapped. We show that the short chirp signal can improve the detection ability compared with a conventional chirp signal and examine the influence that the decreases of the signal duration and the compression ratio exert on the detection range. By the new pulse compression subsurface radar, the steel pipes buried down to 5 m in depth can be detected.

  • A New Technique of Reduction of MEI Coefficient Computation Time for Scattering Problems

    N. M. Alam CHOWDHURY  Jun-ichi TAKADA  Masanobu HIROSE  

     
    LETTER-Engineering Acoustics

      Vol:
    E86-A No:4
      Page(s):
    950-953

    In this letter, we propose a new technique that reduces the computation time to derive the MEI coefficients in solving scattering problems by the Measured Equation of Invariance (MEI) methods. Methods that use the MEI technique spend most of the computation time in the integration process to derive the MEI coefficients. Moreover, in the conventional solution process, some repeated computation of metron fields to derive the MEI coefficients is included. To avoid the repeated operations and thus save computation time, we propose a matrix localization technique in computing the MEI coefficients. The time comparison for the computation of MEI coefficients of a cylinder and a sphere is given to verify the CPU time reduction of our new technique.

  • Antenna Pattern Measurements Using Photonic Sensor for Planar Near-Field Measurement at X Band

    Masanobu HIROSE  Takayuki ISHIZONE  Koji KOMIYAMA  

     
    PAPER-Antenna and Propagation

      Vol:
    E87-B No:3
      Page(s):
    727-734

    We have shown that a photonic sensor can be used as an electric-field probe for planar near-field measurements of X-band antennas. Because an antenna on the photonic sensor is small (about 0.1 λ) compared to the wavelength, the photonic sensor can directly measure the amplitude and the phase of the electric field close (about 0.3 λ) to the apertures of antennas without disturbing the electric field to be measured. Therefore we can obtain the antenna pattern by transforming the measured electric field without probe compensation. To verify the merits of the photonic sensor, we have evaluated the antenna patterns of a standard gain horn antenna and a microstrip array antenna at 9.41 GHz. Comparing the results obtained using the photonic sensor with those obtained using the conventional open-ended waveguide probe and other methods, we have shown that the antenna patterns agree with each other within 1 dB over wide ranges of directivity.

  • A Simply Structured Transverse Slot Linear Array Antenna in a Quasi-TEM Mode Waveguide

    Yuanfeng SHE  Masanobu HIROSE  Yuto KATO  Takayuki ISHIZONE  Satoru KUROKAWA  Shinya IWASAWA  Sintaro ARATA  

     
    BRIEF PAPER

      Vol:
    E100-C No:10
      Page(s):
    924-927

    This article proposes a simply structured transverse slot linear array antenna with a low cross-polarization in X band on a quasi-TEM (transverse electromagnetic) mode waveguide. The fabrication technology of this antenna is very simple and suitable for mass production. A center fed linear slot array has been designed and measured. The quasi-TEM wave is propagating in the conventional waveguide with dielectrics at sidewalls. The simulation and the measurement results show that the baffle plates enhance the gain and reduce the beamwidth effectively. The uncertainties of the electric properties of the dielectric and fabrication errors are also discussed.

  • Novel Formulation for the Scalar-Field Approach of IE-MEI Method to Solve the Three-Dimensional Scattering Problem

    N. M. Alam CHOWDHURY  Jun-ichi TAKADA  Masanobu HIROSE  

     
    PAPER-Ultrasonics

      Vol:
    E85-A No:8
      Page(s):
    1905-1912

    A novel formulation for the Scalar-field approach of Integral Equation formulation of the Measured Equation of Invariance (SIE-MEI) is derived from the scalar reciprocity relation to solve the scalar Helmholtz equation. The basics of this formulation are similar to IE-MEI method for the electromagnetic (EM) problem. The surface integral equation is derived from reciprocity relation and on-surface MEI postulates are used. As a result it generates a sparse linear system with the same number of unknowns as of Boundary Element Method (BEM) and keeps the merits in minimum storage memory requirements and CPU time consumption for computing the final matrix. IE-MEI method has been proposed for two-dimensional (2D) electromagnetic problem, but three-dimensional (3D) problem is very difficult to be extend. This scalar-field approach of IE-MEI method is identical to electromagnetic in 2D, but easily extended to the 3D scalar-field scattering problem contrary to EM problem. The numerical results of sphere and cube are verified with some rigorous or numerical solutions, which give excellent agreement.

  • On Applicability of the Integral Equation Formulation of the Measured Equation of Invariance to 2D Scattering Objects

    Masanobu HIROSE  Masayasu MIYAKE  Jun-ichi TAKADA  Ikuo ARAI  

     
    PAPER-Antennas and Propagation

      Vol:
    E82-B No:4
      Page(s):
    645-654

    This paper shows the applicability of the integral equation formulation of the measured equation of invariance (IE-MEI) to two-dimensional dielectric scatterers. That is, a relationship between the scattered electric and magnetic fields, which is derived from the new formulation of the IE-MEI, is applicable to lossless dielectric materials as well as perfect electric conductors (PEC). In addition, we show that the IE-MEI does not suffer from internal resonance problems. These two facts are validated by numerical examples for a circular cylinder and a square cylinder illuminated by Transverse Magnetic (TM) plane wave or a TM line source very close to the scatterers. The numerical results calculated by the IE-MEI agree well with the ones by moment methods that employ combined field formulations with exact boundary conditions.

  • Antennas Measurement for Millimeter Wave 5G Wireless Applications Using Radio Over Fiber Technologies Open Access

    Satoru KUROKAWA  Michitaka AMEYA  Yui OTAGAKI  Hiroshi MURATA  Masatoshi ONIZAWA  Masahiro SATO  Masanobu HIROSE  

     
    INVITED PAPER

      Pubricized:
    2023/09/19
      Vol:
    E106-B No:12
      Page(s):
    1313-1321

    We have developed an all-optical fiber link antenna measurement system for a millimeter wave 5th generation mobile communication frequency band around 28 GHz. Our developed system consists of an optical fiber link an electrical signal transmission system, an antenna-coupled-electrode electric-field (EO) sensor system for 28GHz-band as an electrical signal receiving system, and a 6-axis vertically articulated robot with an arm length of 1m. Our developed optical fiber link electrical signal transmission system can transmit the electrical signal of more than 40GHz with more than -30dBm output level. Our developed EO sensor can receive the electrical signal from 27GHz to 30GHz. In addition, we have estimated a far field antenna factor of the EO sensor system for the 28GHz-band using an amplitude center modified antenna factor estimation equation. The estimated far field antenna factor of the sensor system is 83.2dB/m at 28GHz.

  • A New Structure of Antenna System in a Handset Enhancing Antenna Gain by Passive Loading--The Case for λ/4 Monopole Antenna--

    Masanobu HIROSE  Masayasu MIYAKE  

     
    PAPER

      Vol:
    E77-B No:7
      Page(s):
    956-961

    We propose a new structure of antenna system to enhance the horizontal plane gain and control the antenna pattern, using passive loading. Our proposed structure can be applied to various kinds of antennas on a handset. We discuss the case of a λ/4 monopole antenna on a handset in this paper. In a new structure of λ/4 monopole antenna system, we show that, 1) the increase of the average gain about 5dB in the horizontal plane can be realized by an optimum load, 2) the antenna pattern can be controlled by changing the value of the passive load so as to have some desirable shapes, and 3) the antenna size can be made smaller by about 6% than the one with no loading because the optimum loading makes the resonant frequency lower. These results were confirmed by the calculations using the method of moments for the EFIE and the measurements.