The search functionality is under construction.

Author Search Result

[Author] Yousuke MIZUKAMI(2hit)

1-2hit
  • Analysis of Second-Order Modes of Linear Continuous-Time Systems under Positive-Real Transformations

    Shunsuke KOSHITA  Yousuke MIZUKAMI  Taketo KONNO  Masahide ABE  Masayuki KAWAMATA  

     
    PAPER-Systems and Control

      Vol:
    E91-A No:2
      Page(s):
    575-583

    This paper discusses the behavior of the second-order modes (Hankel singular values) of linear continuous-time systems under variable transformations with positive-real functions. That is, given a transfer function H(s) and its second-order modes, we analyze the second-order modes of transformed systems H(F(s)), where 1/F(s) is an arbitrary positive-real function. We first discuss the case of lossless positive-real transformations, and show that the second-order modes are invariant under any lossless positive-real transformation. We next consider the case of general positive-real transformations, and reveal that the values of the second-order modes are decreased under any general positive-real transformation. We achieve the derivation of these results by describing the controllability/observability Gramians of transformed systems, with the help of the lossless positive-real lemma, the positive-real lemma, and state-space formulation of transformed systems.

  • Invariance of Second-Order Modes of Linear Continuous-Time Systems under Typical Frequency Transformations

    Masayuki KAWAMATA  Yousuke MIZUKAMI  Shunsuke KOSHITA  

     
    LETTER-Systems and Control

      Vol:
    E90-A No:7
      Page(s):
    1481-1486

    This paper discusses the behavior of the second-order modes (Hankel singular values) of linear continuous-time systems under typical frequency transformations, such as lowpass-lowpass, lowpass-highpass, lowpass-bandpass, and lowpass-bandstop transformations. Our main result establishes the fact that the second-order modes are invariant under any of these typical frequency transformations. This means that any transformed system that is generated from a prototype system has the same second-order modes as those of the prototype system. We achieve the derivation of this result by describing the state-space equations and the controllability/observability Gramians of transformed systems.