The search functionality is under construction.

Author Search Result

[Author] Yu TAO(2hit)

1-2hit
  • Distributed Power Control Network and Green Building Test-Bed for Demand Response in Smart Grid

    Kei SAKAGUCHI  Van Ky NGUYEN  Yu TAO  Gia Khanh TRAN  Kiyomichi ARAKI  

     
    PAPER

      Vol:
    E96-A No:5
      Page(s):
    896-907

    It is known that demand and supply power balancing is an essential method to operate power delivery system and prevent blackouts caused by power shortage. In this paper, we focus on the implementation of demand response strategy to save power during peak hours by using Smart Grid. It is obviously impractical with centralized power control network to realize the real-time control performance, where a single central controller measures the huge metering data and sends control command back to all customers. For that purpose, we propose a new architecture of hierarchical distributed power control network which is scalable regardless of the network size. The sub-controllers are introduced to partition the large system into smaller distributed clusters where low-latency local feedback power control loops are conducted to guarantee control stability. Furthermore, sub-controllers are stacked up in an hierarchical manner such that data are fed back layer-by-layer in the inbound while in the outbound control responses are decentralized in each local sub-controller for realizing the global objectives. Numerical simulations in a realistic scenario of up to 5000 consumers show the effectiveness of the proposed scheme to achieve a desired 10% peak power saving by using off-the-shelf wireless devices with IEEE802.15.4g standard. In addition, a small-scale power control system for green building test-bed is implemented to demonstrate the potential use of the proposed scheme for power saving in real life.

  • Blind Identification of Multichannel Systems Based on Sparse Bayesian Learning

    Kai ZHANG  Hongyi YU  Yunpeng HU  Zhixiang SHEN  Siyu TAO  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2016/06/28
      Vol:
    E99-B No:12
      Page(s):
    2614-2622

    Reliable wireless communication often requires accurate knowledge of the underlying multipath channels. Numerous measurement campaigns have shown that physical multipath channels tend to exhibit a sparse structure. Conventional blind channel identification (BCI) strategies such as the least squares, which are known to be optimal under the assumption of rich multipath channels, are ill-suited to exploiting the inherent sparse nature of multipath channels. Recently, l1-norm regularized least-squares-type approaches have been proposed to address this problem with a single parameter governing all coefficients, which is equivalent to maximum a posteriori probability estimation with a Laplacian prior for the channel coefficients. Since Laplace prior is not conjugate to the Gaussian likelihood, no closed form of Bayesian inference is possible. Following a different approach, this paper deals with blind channel identification of a single-input multiple-output (SIMO) system based on sparse Bayesian learning (SBL). The inherent sparse nature of wireless multipath channels is exploited by incorporating a transformative cross relation formulation into a general Bayesian framework, in which the filter coefficients are governed by independent scalar parameters. A fast iterative Bayesian inference method is then applied to the proposed model for obtaining sparse solutions, which completely eliminates the need for computationally costly parameter fine tuning, which is necessary in the l1-norm regularization method. Simulation results are provided to demonstrate the superior effectiveness of the proposed channel estimation algorithm over the conventional least squares (LS) scheme as well as the l1-norm regularization method. It is shown that the proposed algorithm exhibits superior estimation performance compared to both LS and l1-norm regularization methods.