The search functionality is under construction.

Author Search Result

[Author] Kai ZHANG(8hit)

1-8hit
  • Dual-Core Framework: Eliminating the Bottleneck Effect of Scalar Kernels on SIMD Architectures

    Yaohua WANG  Shuming CHEN  Hu CHEN  Jianghua WAN  Kai ZHANG  Sheng LIU  

     
    LETTER-Computer System

      Vol:
    E96-D No:2
      Page(s):
    365-369

    The efficiency of ubiquitous SIMD (Single Instruction Multiple Data) media processors is seriously limited by the bottleneck effect of the scalar kernels in media applications. To solve this problem, a dual-core framework, composed of a micro control unit and an instruction buffer, is proposed. This framework can dynamically decouple the scalar and vector pipelines of the original single-core SIMD architecture into two free-running cores. Thus, the bottleneck effect can be eliminated by effectively exploiting the parallelism between scalar and vector kernels. The dual-core framework achieves the best attributes of both single-core and dual-core SIMD architectures. Experimental results exhibit an average performance improvement of 33%, at an area overhead of 4.26%. What's more, with the increase of the SIMD width, higher performance gain and lower cost can be expected.

  • Adaptive Orthonormal Random Beamforming and Multi-Beam Selection for Cellular Systems

    Kai ZHANG  Zhisheng NIU  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:8
      Page(s):
    2090-2096

    Channel state information (CSI) at transmitter plays an important role for multiuser MIMO broadcast channels, but full CSI at transmitter is not available for many practical systems. Previous work has proposed orthonormal random beamforming (ORBF) [16] for MIMO broadcast channels with partial channel state information (CSI) feedback, and shown that ORBF achieves the optimal sum-rate capacity for a large number of users. However, for cellular systems with moderate number of users, i.e., no more than 64, ORBF only achieves slight performance gain. Therefore, we analyze the performance of ORBF with moderate number of users and total transmit power constraint and show that ORBF scheme is more efficient under low SNR. Then we propose an adaptive ORBF scheme that selects the number of random beams for simultaneous transmission according to the average signal-to-noise ratio (SNR). Moreover, a multi-beam selection (MBS) scheme that jointly selects the number and the subset of the multiple beams is proposed to further improve the system performance for low SNR cases. The simulation results show that the proposed schemes achieve significant performance improvement when the number of users is moderate.

  • Joint Transmit Rate, Power and Antenna Allocation for MIMO Systems with Multimedia Traffic

    Kai ZHANG  Zhisheng NIU  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:6
      Page(s):
    1939-1942

    This paper proposes an adaptive transmission scheme for MIMO systems to provide different bit error rates and transmission rates for multimedia traffic. The adaptive transmission scheme allocates antennas, rate and power jointly according to the feedback information to satisfy the diverse QoS requirements of the multimedia traffic. Furthermore, an efficient search algorithm with low complexity is proposed for practical implementation. Simulation results show that the proposed scheme improves the spectral efficiency while guaranteeing the QoS requirements of multimedia traffic. Moreover, the proposed search algorithm achieves close optimal performance with great complexity reduction.

  • Adaptive Receive Antenna Selection for Orthogonal Space-Time Block Codes with Imperfect Channel Estimation

    Kai ZHANG  Zhisheng NIU  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E90-B No:12
      Page(s):
    3695-3698

    For coherent detection, decoding Orthogonal Space-Time Block Codes (OSTBC) requires full channel state information at the receiver, which basically is obtained by channel estimation. However, in practical systems, channel estimation errors are inevitable and may degrade the system performance more as the number of antennas increases. This letter shows that, using fewer receive antennas can enhance the performance of OSTBC systems in presence of channel estimation errors. Furthermore, a novel adaptive receive antenna selection scheme, which adaptively adjusts the number of receive antennas, is proposed. Performance evaluation and numerical examples show that the proposed scheme improves the performance obviously.

  • Different Mechanisms of Temperature Dependency of N-Hit SET in Bulk and PD-SOI Technology

    Biwei LIU  Yankang DU  Kai ZHANG  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E97-C No:5
      Page(s):
    455-459

    Many studies have reported that the single-event transient (SET) width increases with temperature. However, the mechanism for this temperature dependency is not clear, especially for an N-hit SET. In this study, TCAD simulations are carried out to study the temperature dependence of N-hit SETs in detail. Several possible factors are examined, and the results show that the temperature dependence in bulk devices is due to the decrease in the carrier mobility with temperature in both the struck NMOS and the pull-up PMOS. In contrast, the temperature dependence in SOI devices is due to the decrease in the diffusion constant and carrier lifetime with temperature, which enhances the parasitic bipolar effect.

  • Interference Suppression for Block Diagonalization MIMO Downlink Systems over Time-Varying Channels

    Kai ZHANG  Zhisheng NIU  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E90-B No:12
      Page(s):
    3687-3690

    The performance of multiuser MIMO downlink systems with block diagonalization (BD) relies on the channel state information (CSI) at the transmitter to a great extent. For time division duplex TDD systems, the transmitter estimates the CSI while receiving data at current time slot and then uses the CSI to transmit at the next time slot. When the wireless channel is time-varying, the CSI for transmission is imperfect due to the time delay between the estimation of the channel and the transmission of the data and severely degrades the system performance. In this paper, we propose a linear method to suppress the interferences among users and data streams caused by imperfect CSI at transmitter. The transmitter first sends pilot signals through a linear spatial precoding matrix so as to make possible that the receiver can estimate CSI of other users, and then the receiver exploits a linear prefilter to suppress the interference. The numerical results show that the proposed schemes achieve obvious performance enhancement in comparison to the BD scheme with imperfect CSI at the transmitter.

  • Deterministic Message Passing for Distributed Parallel Computing

    Xu ZHOU  Kai LU  Xiaoping WANG  Wenzhe ZHANG  Kai ZHANG  Xu LI  Gen LI  

     
    PAPER-Fundamentals of Information Systems

      Vol:
    E96-D No:5
      Page(s):
    1068-1077

    The nondeterminism of message-passing communication brings challenges to program debugging, testing and fault-tolerance. This paper proposes a novel deterministic message-passing implementation (DMPI) for parallel programs in the distributed environment. DMPI is compatible with the standard MPI in user interface, and it guarantees the reproducibility of message with high performance. The basic idea of DMPI is to use logical time to solve message races and control asynchronous transmissions, and thus we could eliminate the nondeterministic behaviors of the existing message-passing mechanism. We apply a buffering strategy to alleviate the performance slowdown caused by mismatch of logical time and physical time. To avoid deadlocks introduced by deterministic mechanisms, we also integrate DMPI with a lightweight deadlock checker to dynamically detect and solve these deadlocks. We have implemented DMPI and evaluated it using NPB benchmarks. The results show that DMPI could guarantee determinism with incurring modest runtime overhead (14% on average).

  • Blind Identification of Multichannel Systems Based on Sparse Bayesian Learning

    Kai ZHANG  Hongyi YU  Yunpeng HU  Zhixiang SHEN  Siyu TAO  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2016/06/28
      Vol:
    E99-B No:12
      Page(s):
    2614-2622

    Reliable wireless communication often requires accurate knowledge of the underlying multipath channels. Numerous measurement campaigns have shown that physical multipath channels tend to exhibit a sparse structure. Conventional blind channel identification (BCI) strategies such as the least squares, which are known to be optimal under the assumption of rich multipath channels, are ill-suited to exploiting the inherent sparse nature of multipath channels. Recently, l1-norm regularized least-squares-type approaches have been proposed to address this problem with a single parameter governing all coefficients, which is equivalent to maximum a posteriori probability estimation with a Laplacian prior for the channel coefficients. Since Laplace prior is not conjugate to the Gaussian likelihood, no closed form of Bayesian inference is possible. Following a different approach, this paper deals with blind channel identification of a single-input multiple-output (SIMO) system based on sparse Bayesian learning (SBL). The inherent sparse nature of wireless multipath channels is exploited by incorporating a transformative cross relation formulation into a general Bayesian framework, in which the filter coefficients are governed by independent scalar parameters. A fast iterative Bayesian inference method is then applied to the proposed model for obtaining sparse solutions, which completely eliminates the need for computationally costly parameter fine tuning, which is necessary in the l1-norm regularization method. Simulation results are provided to demonstrate the superior effectiveness of the proposed channel estimation algorithm over the conventional least squares (LS) scheme as well as the l1-norm regularization method. It is shown that the proposed algorithm exhibits superior estimation performance compared to both LS and l1-norm regularization methods.