The search functionality is under construction.

Author Search Result

[Author] Yuehang DING(5hit)

1-5hit
  • Iterative Cross-Lingual Entity Alignment Based on TransC

    Shize KANG  Lixin JI  Zhenglian LI  Xindi HAO  Yuehang DING  

     
    LETTER

      Pubricized:
    2020/01/09
      Vol:
    E103-D No:5
      Page(s):
    1002-1005

    The goal of cross-lingual entity alignment is to match entities from knowledge graph of different languages that represent the same object in the real world. Knowledge graphs of different languages can share the same ontology which we guess may be useful for entity alignment. To verify this idea, we propose a novel embedding model based on TransC. This model first adopts TransC and parameter sharing model to map all the entities and relations in knowledge graphs to a shared low-dimensional semantic space based on a set of aligned entities. Then, the model iteratively uses reinitialization and soft alignment strategy to perform entity alignment. The experimental results show that, compared with the benchmark algorithms, the proposed model can effectively fuse ontology information and achieve relatively better results.

  • Joint Optimization of Delay Guarantees and Resource Allocation for Service Function Chaining

    Yunjie GU  Yuehang DING  Yuxiang HU  

     
    LETTER-Information Network

      Pubricized:
    2019/09/19
      Vol:
    E102-D No:12
      Page(s):
    2611-2614

    A Service Function Chain (SFC) is an ordered sequence of virtual network functions (VNFs) to provide network service. Most existing SFC orchestration schemes, however, cannot optimize the resources allocation while guaranteeing the service delay constraint. To fulfill this goal, we propose a Layered Graph based SFC Orchestration Scheme (LGOS). LGOS converts both the cost of resource and the related delay into the link weights in the layered graph, which helps abstract the SFC orchestration problem as a shortest path problem. Then a simulated annealing based batch processing algorithm is designed for SFC requests set. Through extensive evaluations, we demonstrated that our scheme can reduce the end-to-end delay and the operational expenditure by 21.6% and 13.7% at least, and the acceptance ratio of requests set can be improved by 22.3%, compared with other algorithms.

  • Super-Node Based Detection of Redundant Ontology Relations

    Yuehang DING  Hongtao YU  Jianpeng ZHANG  Yunjie GU  Ruiyang HUANG  Shize KANG  

     
    LETTER-Data Engineering, Web Information Systems

      Pubricized:
    2019/04/18
      Vol:
    E102-D No:7
      Page(s):
    1400-1403

    Redundant relations refer to explicit relations which can also be deducted implicitly. Although there exist several ontology redundancy elimination methods, they all do not take equivalent relations into consideration. Actually, real ontologies usually contain equivalent relations; their redundancies cannot be completely detected by existing algorithms. Aiming at solving this problem, this paper proposes a super-node based ontology redundancy elimination algorithm. The algorithm consists of super-node transformation and transitive redundancy elimination. During the super-node transformation process, nodes equivalent to each other are transferred into a super-node. Then by deleting the overlapped edges, redundancies relating to equivalent relations are eliminated. During the transitive redundancy elimination process, redundant relations are eliminated by comparing concept nodes' direct and indirect neighbors. Most notably, we proposed a theorem to validate real ontology's irredundancy. Our algorithm outperforms others on both real ontologies and synthetic dynamic ontologies.

  • A Knowledge Representation Based User-Driven Ontology Summarization Method

    Yuehang DING  Hongtao YU  Jianpeng ZHANG  Huanruo LI  Yunjie GU  

     
    LETTER-Data Engineering, Web Information Systems

      Pubricized:
    2019/05/30
      Vol:
    E102-D No:9
      Page(s):
    1870-1873

    As the superstructure of knowledge graph, ontology has been widely applied in knowledge engineering. However, it becomes increasingly difficult to be practiced and comprehended due to the growing data size and complexity of schemas. Hence, ontology summarization surfaced to enhance the comprehension and application of ontology. Existing summarization methods mainly focus on ontology's topology without taking semantic information into consideration, while human understand information based on semantics. Thus, we proposed a novel algorithm to integrate semantic information and topological information, which enables ontology to be more understandable. In our work, semantic and topological information are represented by concept vectors, a set of high-dimensional vectors. Distances between concept vectors represent concepts' similarity and we selected important concepts following these two criteria: 1) the distances from important concepts to normal concepts should be as short as possible, which indicates that important concepts could summarize normal concepts well; 2) the distances from an important concept to the others should be as long as possible which ensures that important concepts are not similar to each other. K-means++ is adopted to select important concepts. Lastly, we performed extensive evaluations to compare our algorithm with existing ones. The evaluations prove that our approach performs better than the others in most of the cases.

  • Partial Label Metric Learning Based on Statistical Inference

    Tian XIE  Hongchang CHEN  Tuosiyu MING  Jianpeng ZHANG  Chao GAO  Shaomei LI  Yuehang DING  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2020/03/05
      Vol:
    E103-D No:6
      Page(s):
    1355-1361

    In partial label data, the ground-truth label of a training example is concealed in a set of candidate labels associated with the instance. As the ground-truth label is inaccessible, it is difficult to train the classifier via the label information. Consequently, manifold structure information is adopted, which is under the assumption that neighbor/similar instances in the feature space have similar labels in the label space. However, the real-world data may not fully satisfy this assumption. In this paper, a partial label metric learning method based on likelihood-ratio test is proposed to make partial label data satisfy the manifold assumption. Moreover, the proposed method needs no objective function and treats the data pairs asymmetrically. The experimental results on several real-world PLL datasets indicate that the proposed method outperforms the existing partial label metric learning methods in terms of classification accuracy and disambiguation accuracy while costs less time.