1-3hit |
Yuhwai TSENG Chauchin SU Chien-Nan Jimmy LIU
This study develops a form of digital baseband Intra-Body communication for wideband transmission. A simplified circuit model of signal and noise is constructed to analyze the contribution of the high pass filter function of the electrostatic coupling Intra-Body communication system to wideband digital transmission in electrostatic coupling Intra-Body communication. A unit step function is presented to determine the maximum high pass 3 dB pole that can ensure favorable signal quality in a baseband Intra-Body communication system. Body noise is measured to estimate the range of the high pass 3 dB pole with good Signal to Noise Ratio. A 3.3 Volt battery-powered FPGA is experimentally implemented to confirm the feasibility of the wideband Intra-Body communication system. The experimental results indicate that the digital baseband Intra-Body communication system supports a data rate of more than 16MPS.
Yuhwai TSENG Chauchin SU Chien-Nan Jimmy LIU
In this study, we use the deconvolution of a square test stimulus to replace a series of sinusoidal test waveforms with different frequencies to simplify the measurement of human body impedance. The average biological impedance of body parts is evaluated by constructing a frequency response of the equivalent human body system. Only two stainless-steel electrodes are employed in the measurement and evaluation.
Yuhwai TSENG Chauchin SU Chien-Nan Jimmy LIU
This study employs a simple measurement methodology that is based on the de-convolution of a square test stimulus to measure the transmission characteristics of the human body channel in an electrostatic-coupling intra body communication system. A battery-powered square waveform generator was developed to mimic the electrostatic-coupling intra body communication system operating in the environment of the ground free. The measurement results are then confirmed using a reliable measuring method (single tone) and spectral analysis. The results demonstrate that the proposed measurement approach is valid for up to 32.5 MHz, providing a data rate of over 16 Mbps.