1-2hit |
Kazu MISHIBA Yuji OYAMADA Katsuya KONDO
Conventional image retargeting methods fail to avoid distortion in the case where visually important regions are distributed all over the image. To reduce distortions, this paper proposes a novel image retargeting method that incorporates letterboxing into an image warping framework. Letterboxing has the advantage of producing results without distortion or content loss although being unable to use the entire display area. Therefore, it is preferable to combine a retargeting method with a letterboxing operator when displaying images in full screen. Experimental results show that the proposed method is superior to conventional methods in terms of visual quality measured by an objective metric.
Takayuki TOMIOKA Kazu MISHIBA Yuji OYAMADA Katsuya KONDO
Depth estimation for a lense-array type light field camera is a challenging problem because of the sensor noise and the radiometric distortion which is a global brightness change among sub-aperture images caused by a vignetting effect of the micro-lenses. We propose a depth map estimation method which has robustness against sensor noise and radiometric distortion. Our method first binarizes sub-aperture images by applying the census transform. Next, the binarized images are matched by computing the majority operations between corresponding bits and summing up the Hamming distance. An initial depth obtained by matching has ambiguity caused by extremely short baselines among sub-aperture images. After an initial depth estimation process, we refine the result with following refinement steps. Our refinement steps first approximate the initial depth as a set of depth planes. Next, we optimize the result of plane fitting with an edge-preserving smoothness term. Experiments show that our method outperforms the conventional methods.