1-9hit |
Kazu MISHIBA Yuji OYAMADA Katsuya KONDO
Conventional image retargeting methods fail to avoid distortion in the case where visually important regions are distributed all over the image. To reduce distortions, this paper proposes a novel image retargeting method that incorporates letterboxing into an image warping framework. Letterboxing has the advantage of producing results without distortion or content loss although being unable to use the entire display area. Therefore, it is preferable to combine a retargeting method with a letterboxing operator when displaying images in full screen. Experimental results show that the proposed method is superior to conventional methods in terms of visual quality measured by an objective metric.
Syoji KOBASHI Katsuya KONDO Yutaka HATA
Finding intracranial aneurysms plays a key role in preventing serious cerebral diseases such as subarachnoid hemorrhage. For detection of aneurysms, magnetic resonance angiography (MRA) can provide detailed images of arteries non-invasively. However, because over 100 MRA images per subject are required to cover the entire cerebrum, image diagnosis using MRA is very time-consuming and labor-intensive. This article presents a computer-aided diagnosis (CAD) system for finding aneurysms with MRA images. The principal components are identification of aneurysm candidates (= ROIs; regions of interest) from MRA images and estimation of a fuzzy degree for each aneurysm candidate based on a case-based reasoning (CBR). The fuzzy degree indicates whether a candidate is true aneurysm. Our system presents users with a limited number of ROIs that have been sorted in order of fuzzy degree. Thus, this system can decrease the time and the labor required for detecting aneurysms. Experimental results using phantoms indicate that the system can detect all aneurysms at branches of arteries and all saccular aneurysms produced by dilation of a straight artery in 1 direction perpendicular to the principal axis. In a clinical evaluation, performance in finding aneurysms and estimating the fuzzy degree was examined by applying the system to 16 subjects with a total of 19 aneurysms. The experimental results indicate that this CAD system detected all aneurysms except a fusiform aneurysm, and gave high fuzzy degrees and high priorities for the detected aneurysms.
Yuya KAMOZAKI Toshiyuki SAWAYAMA Kazuhiko TANIGUCHI Syoji KOBASHI Katsuya KONDO Yutaka HATA
In this paper, we describe a new ultrasonic oscillosensor and its application in a biological information measurement system. This ultrasonic sensor has a cylindrical tank of 26 mm (diameter)20 mm (height) filled with water and an ultrasonic probe. It detects the vibration of the target object by obtaining echo signals reflected from the water surface. This sensor can noninvasively detect the vibration of a patient by placing it under a bed frame. We propose a recognition system for humans in bed. Using this sensor, we could determine whether or not a patient is in the bed. Moreover, we propose a heart rate monitoring system using this sensor. When our system was tested on four volunteers, we successfully detected a heart rate comparable to that in the case of using an electrocardiograph. Fuzzy logic plays a primary role in the recognition. Consequently, this system can noninvasively determine whether a patient is in the bed as well as their heart rate using a constraint-free and compact device.
Masahiro MUIKAICHI Katsuya KONDO Nozomu HAMADA
Recently, the spatio-temporal filter using linear analog Cellular Neural Network (CNN), called CNN filter array, has been proposed for the purpose of dynamic image processing. In this paper, we propose a design method of descrete-time cellular neural network filter which selectively extracts the particular moving object from other moving objects and noise. The CNN filter array forms a spatio-temporal filter by arranging cells with a same function. Each of these cells is a simple linear analog temporal filter whose input is the weighted sum of its neighborhood inputs and outputs and each cell corresponds to each pixel. The CNN filter is formed by new model of discrete time CNN, and the filter parameters are determined by applying backpropagation algorithm in place of the analytic method. Since the number of connections between neurons in the CNN-type filter is relatively few, the required computation in the learning phase is reasonable amount. Further, the output S/N ratio is improved by introducing nonlinear element. That is, if the ratio of output to imput is smaller than a certain value, the output signal is treated as a noise signal and ought to be rejected. Through some examples, it is shown that the target object is enhanced in the noisy environment.
Maki ENDO Kouki NAGAMUNE Nao SHIBANUMA Syoji KOBASHI Katsuya KONDO Yutaka HATA
We describe a new ultrasonography system, which can identify an implant position in bone. Although conventional X-ray fluoroscopy can visualize implants, it has the serious disadvantage of X-ray exposure. Therefore, we developed a system for orthopedic surgery that involves no X-ray exposure. Barriers to the development of the system were overcome using an ultrasonic instrument and fuzzy logic techniques. We located distal transverse screw holes in an intramedullary nail during surgery for femur fracture. The screw hole positions are identified by calculating two fuzzy degrees of intensity and the variance. Results allow this system to identify the screw hole positions within an error of 1.43 mm, an error ratio adequate for clinical surgical practice.
Mitsuji MUNEYASU Katsuya KONDO
Takayuki TOMIOKA Kazu MISHIBA Yuji OYAMADA Katsuya KONDO
Depth estimation for a lense-array type light field camera is a challenging problem because of the sensor noise and the radiometric distortion which is a global brightness change among sub-aperture images caused by a vignetting effect of the micro-lenses. We propose a depth map estimation method which has robustness against sensor noise and radiometric distortion. Our method first binarizes sub-aperture images by applying the census transform. Next, the binarized images are matched by computing the majority operations between corresponding bits and summing up the Hamming distance. An initial depth obtained by matching has ambiguity caused by extremely short baselines among sub-aperture images. After an initial depth estimation process, we refine the result with following refinement steps. Our refinement steps first approximate the initial depth as a set of depth planes. Next, we optimize the result of plane fitting with an edge-preserving smoothness term. Experiments show that our method outperforms the conventional methods.
Yasushi ONO Katsuya KONDO Kazu MISHIBA
Intensity modulated radiation therapy (IMRT), which irradiates doses to a target organ, calculates the irradiation dose using the radiation treatment planning system (RTPS). The irradiation quality is ensured by verifying that the dose distribution planned by RTPS is the same as the data measured by two-dimensional (2D) detectors. Since an actual three-dimensional (3D) distribution of irradiated dose spreads complicatedly, it is different from that of RTPS. Therefore, it is preferable to evaluate by using not only RTPS, but also actual irradiation dose distribution. In this paper, in order to perform a dose-volume histogram (DVH) evaluation of the irradiation dose distribution, we propose a method of correcting the dose distribution of RTPS by using sparsely measured radial data from 2D dose detectors. And we perform a DVH evaluation of irradiation dose distribution and we show that the proposed method contributes to high-precision DVH evaluation. The experimental results show that the estimates are in good agreement with the measured data from the 2D detectors and that the peak signal to noise ratio and the structural similarity indexes of the estimates are more accurate than those of RTPS. Therefore, we present the possibility of an evaluation of the actual irradiation dose distribution using measured data in a limited observation direction.