1-3hit |
Naoki MATSUDA Hirotaka OKABE Masaki FUJII Masayoshi MATSUI Yusuke AYATO Akiko TAKATSU Kenji KATO
In situ observation of the adsorption process and the states of cytochrome c on glass/solution interfaces, and the functionality of the reduction reaction of adsorbed cytochorome c were performed by using slab optical waveguide (SOWG) spectroscopy. The peak position of the absorption band of cytochorome c adsorbed on a bare glass surface was almost the same as that of that in solution. The cytochorome c adsorbed on glass/solution interface was reduced by sodium dithionite solution. The adsorbed cytochorome c was still maintained its functionality after immobilization.
Yusuke AYATO Akiko TAKATSU Kenji KATO Naoki MATSUDA
In situ observations were mainly performed by using slab optical waveguide (SOWG) spectroscopy synchronized with potential step measurements to investigate the time dependent spectral change of the adsorbed heptyl viologen cation radicals (HV+
Yusuke AYATO Akiko TAKATSU Kenji KATO Naoki MATSUDA
In situ observation of electrochemical activity and time dependent characteristics of cytochrome c (cyt c) was carried out in 0.01 M phosphate buffered saline (PBS, pH 7.4) containing 20 µM cyt c solutions at bare indium-tin-oxide (ITO) electrodes by using a cyclic voltammetry (CV) and a slab optical waveguide (SOWG) spectroscopy. The bare ITO electrodes could retain the electrochemical activity of cyt c in the PBS solutions, indicating the great advantage of using ITO electrodes against other electrode materials, such as gold (Au). The CV curves and simultaneously observed the time-resolved SOWG absorption spectra in the consecutive cycles implied that the cyt c molecules could retain its own electrochemical function for a long time.