The search functionality is under construction.

Author Search Result

[Author] Yuta KAWAGUCHI(2hit)

1-2hit
  • Low Complexity Soft Input Decoding in an Iterative Linear Receiver for Overloaded MIMO Open Access

    Satoshi DENNO  Tsubasa INOUE  Yuta KAWAGUCHI  Takuya FUJIWARA  Yafei HOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2019/11/06
      Vol:
    E103-B No:5
      Page(s):
    600-608

    This paper proposes a low complexity soft input decoding in an iterative linear receiver for overloaded MIMO. The proposed soft input decoding applies two types of lattice reduction-aided linear filters to estimate log-likelihood ratio (LLR) in order to reduce the computational complexity. A lattice reduction-aided linear with whitening filter is introduced for the LLR estimation in the proposed decoding. The equivalent noise caused by the linear filter is mitigated with the decoder output stream and the LLR is re-estimated after the equivalent noise mitigation. Furthermore, LLR clipping is introduced in the proposed decoding to avoid the performance degradation due to the incorrect LLRs. The performance of the proposed decoding is evaluated by computer simulation. The proposed decoding achieves about 2dB better BER performance than soft decoding with the exhaustive search algorithm, so called the MLD, at the BER of 10-4, even though the complexity of the proposed decoding is 1/10 as small as that of soft decoding with the exhaustive search.

  • A Novel Low Complexity Lattice Reduction-Aided Iterative Receiver for Overloaded MIMO Open Access

    Satoshi DENNO  Yuta KAWAGUCHI  Tsubasa INOUE  Yafei HOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/11/21
      Vol:
    E102-B No:5
      Page(s):
    1045-1054

    This paper proposes a novel low complexity lattice reduction-aided iterative receiver for overloaded MIMO. Novel noise cancellation is proposed that increases an equivalent channel gain with a scalar gain introduced in this paper, which results in the improvement of the signal to noise power ratio (SNR). We theoretically analyze the performance of the proposed receiver that the lattice reduction raises the SNR of the detector output signals as the scalar gain increases, when the Lenstra-Lenstra-Lova's (LLL) algorithm is applied to implement the lattice reduction. Because the SNR improvement causes the scalar gain to increase, the performance is improved by iterating the reception process. Computer simulations confirm the performance. The proposed receiver attains a gain of about 5dB at the BER of 10-4 in a 6×2 overloaded MIMO channel. Computational complexity of the proposed receiver is about 1/50 as much as that of the maximum likelihood detection (MLD).