The search functionality is under construction.

Author Search Result

[Author] Zhenyang WU(3hit)

1-3hit
  • Diagonal Block Orthogonal Algebraic Space-Time Block Codes

    Chen LIU  Zhenyang WU  Hua-An ZHAO  

     
    LETTER-Communications and Wireless Systems

      Vol:
    E88-D No:7
      Page(s):
    1457-1459

    This paper proposes a new family of space-time block codes whose transmission rate is 1 symbol per channel use. The proposed space-time codes can achieve full transmit diversity with larger coding gain for the constellation carved from the scaled complex integer ring κZ[i]. It is confirmed that the performances of the proposed space-time codes are superior to the existing space-time block codes by our simulation results.

  • Robust Superpixel Tracking with Weighted Multiple-Instance Learning

    Xu CHENG  Nijun LI  Tongchi ZHOU  Lin ZHOU  Zhenyang WU  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2015/01/15
      Vol:
    E98-D No:4
      Page(s):
    980-984

    This paper proposes a robust superpixel-based tracker via multiple-instance learning, which exploits the importance of instances and mid-level features captured by superpixels for object tracking. We first present a superpixels-based appearance model, which is able to compute the confidences of the object and background. Most importantly, we introduce the sample importance into multiple-instance learning (MIL) procedure to improve the performance of tracking. The importance for each instance in the positive bag is defined by accumulating the confidence of all the pixels within the corresponding instance. Furthermore, our tracker can help recover the object from the drifting scene using the appearance model based on superpixels when the drift occurs. We retain the first (k-1) frames' information during the updating process to alleviate drift to some extent. To evaluate the effectiveness of the proposed tracker, six video sequences of different challenging situations are tested. The comparison results demonstrate that the proposed tracker has more robust and accurate performance than six ones representing the state-of-the-art.

  • Multi-Task Object Tracking with Feature Selection

    Xu CHENG  Nijun LI  Tongchi ZHOU  Zhenyang WU  Lin ZHOU  

     
    LETTER-Image

      Vol:
    E98-A No:6
      Page(s):
    1351-1354

    In this paper, we propose an efficient tracking method that is formulated as a multi-task reverse sparse representation problem. The proposed method learns the representation of all tasks jointly using a customized APG method within several iterations. In order to reduce the computational complexity, the proposed tracking algorithm starts from a feature selection scheme that chooses suitable number of features from the object and background in the dynamic environment. Based on the selected feature, multiple templates are constructed with a few candidates. The candidate that corresponds to the highest similarity to the object templates is considered as the final tracking result. In addition, we present a template update scheme to capture the appearance changes of the object. At the same time, we keep several earlier templates in the positive template set unchanged to alleviate the drifting problem. Both qualitative and quantitative evaluations demonstrate that the proposed tracking algorithm performs favorably against the state-of-the-art methods.