1-4hit |
Yuzhuo LIU Hangting CHEN Qingwei ZHAO Pengyuan ZHANG
Weakly labelled semi-supervised audio tagging (AT) and sound event detection (SED) have become significant in real-world applications. A popular method is teacher-student learning, making student models learn from pseudo-labels generated by teacher models from unlabelled data. To generate high-quality pseudo-labels, we propose a master-teacher-student framework trained with a dual-lead policy. Our experiments illustrate that our model outperforms the state-of-the-art model on both tasks.
Xue ZHANG Anhong WANG Bing ZENG Lei LIU Zhuo LIU
Numerous examples in image processing have demonstrated that human visual perception can be exploited to improve processing performance. This paper presents another showcase in which some visual information is employed to guide adaptive block-wise compressive sensing (ABCS) for image data, i.e., a varying CS-sampling rate is applied on different blocks according to the visual contents in each block. To this end, we propose a visual analysis based on the discrete cosine transform (DCT) coefficients of each block reconstructed at the decoder side. The analysis result is sent back to the CS encoder, stage-by-stage via a feedback channel, so that we can decide which blocks should be further CS-sampled and what is the extra sampling rate. In this way, we can perform multiple passes of reconstruction to improve the quality progressively. Simulation results show that our scheme leads to a significant improvement over the existing ones with a fixed sampling rate.
Zhuo LIU Dan SHI Yougang GAO Junjian BI Zhiliang TAN Jingjing SHI
This paper presents a new way to classify different radiation sources by the parameter of directivity, which is a characteristic parameter of electromagnetic radiation sources. The parameter can be determined from measurements of the electric field intensity radiating in all directions in space. We develop three basic antenna models, which are for 3GHz operation, and set 125,000 groups of cube receiving arrays along the main lobe of their radiation patterns to receive the data of far field electric intensity in groups. Then the Back Propagation (BP) neural network and the Support Vector Machine (SVM) method are adopted to analyze training data set, and build and test the classification model. Owing to the powerful nonlinear simulation ability, the SVM method offers higher classification accuracy than the BP neural network in noise environment. At last, the classification model is comprehensively evaluated in three aspects, which are capability of noise immunity, F1 measure and the normalization method.
Xiangdong HUANG Mengkai YANG Mingzhuo LIU Lin YANG Haipeng FU
This paper addresses joint estimation of the frequency and the direction-of-arrival (DOA), under the relaxed condition that both snapshots in the temporal domain and sensors in the spacial domain are sparsely spaced. Specifically, a novel coprime sparse array allowing a large range for interelement spacings is employed in the proposed joint scheme, which greatly alleviates the conventional array's half-wavelength constraint. Further, by incorporating small-sized DFT spectrum correction with the closed-form robust Chinese Remainder Theorem (CRT), both spectral aliasing and integer phase ambiguity caused by spatio-temporal under-sampling can be removed in an efficient way. As a result, these two parameters can be efficiently estimated by reusing the observation data collected in parallel at different undersampling rates, which remarkably improves the data utilization. Numerical results demonstrate that the proposed joint scheme is highly accurate.