1-4hit |
Toshifumi NAKATANI Koichi OGAWA
A low distortion and low noise differential amplifier using the difference between the even- and odd-mode impedances is proposed. In order to realize an amplifier with high OIP3 and low NF characteristics, the impedance of the bias circuit should be low (<300 Ω) at the difference frequency and high (>4 kΩ) at the carrier frequency. Although the frequency response of the bias circuit impedance can only meet these conditions with difficulty, owing to the 20 MHz Tx signal bandwidth for 3G LTE, the proposed amplifier can achieve the impedance difference using the properties of a differential configuration where the difference frequency signal is the even-mode and the carrier frequency is the odd-mode. It has been demonstrated that the NF of the proposed amplifier, which has been fabricated in 0.18 µm SiGe BiCMOS technology operating at 2.14 GHz, can be kept to 1.6 dB or less and an OIP3 of 9.0 dBm can be achieved, which is 3 dB higher than that of a conventional amplifier, in the condition where the power gain is greater than 18 dB.
Toshifumi NAKATANI Koichi OGAWA
A new method of cancellation of IM3 using current feedback has been proposed for a multi-stage RFIC amplifier. In order to cancel the IM3 present in an output signal of the amplifier, the IIP3 level and IM3 phase of the amplifier are adjusted by means of feedback circuit techniques, so that the target specification is satisfied. By estimating the IIP3 level and IM3 phase variations for two states in situations with and without feedback possessing linear factors, the parameters of a feedback circuit can be calculated. To confirm the validity of the method, we have investigated two approaches; one including an analytical approach to designing a two-stage feedback amplifier, achieving an IIP3 level improvement of 14.8 dB. The other method involves the fabrication of single-stage amplifiers with and without feedback, operating at 850 MHz, both of which were designed as an integrated circuit using a 0.18 µm SiGe BiCMOS process. The fabricated IC's were tested using a load-pull measurement system, and a good agreement between the estimated and measured IIP3 level and IM3 phase variations has been achieved. Further studies show that the error in these variations, as estimated by the method, has been found to be less than 1.5 dB and 15 degrees, respectively, when the load admittance at 1701 MHz was greater than 1/50 S.
Kazuo KUMAMOTO Katsutoshi TSUKAMOTO Shozo KOMAKI
This paper proposes a nonlinear distortion suppression scheme for optical direct FM Radio-on-Fiber system. This scheme uses the interaction between the nonlinearities of DFM-LD and OFD to suppress a 3rd order intermodulation distortion. We theoretically analyze the carrier to noise-plus-distortion ratio (CNDR) and show a controlling method in the MZI type OFD to realize the proposed suppression scheme.
Kazuo KUMAMOTO Katsutoshi TSUKAMOTO Shozo KOMAKI
This paper proposes a nonlinear distortion suppression scheme for optical direct FM Radio-on-Fiber system. This scheme uses the interaction between the nonlinearities of DFM-LD and OFD to suppress a 3rd order intermodulation distortion. We theoretically analyze the carrier to noise-plus-distortion ratio (CNDR) and show a controlling method in the MZI type OFD to realize the proposed suppression scheme.