The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] 4K/8K(2hit)

1-2hit
  • Transmission System of 4K/8K UHDTV Satellite Broadcasting Open Access

    Yoichi SUZUKI  Hisashi SUJIKAI  

     
    INVITED PAPER

      Pubricized:
    2020/04/21
      Vol:
    E103-B No:10
      Page(s):
    1050-1058

    4K/8K satellite broadcasting featuring ultra-high definition video and sound was launched in Japan in 2018. This is the first 8K ultra high definition television (UHDTV) broadcasting in the world, with 16 times as many pixels as HDTV and 3D sound with 22.2ch audio. The large amount of information that has to be transmitted means that a new satellite broadcasting transmission system had to be developed. In this paper, we describe this transmission system, focusing on the technology that enables 4K/8K UHDTV satellite broadcasting.

  • Misalignment Tolerance of Pluggable Ballpoint-Pen Interconnect of Graded-Index Plastic Optical Fiber for 4K/8K UHD Display Open Access

    Azusa INOUE  Yasuhiro KOIKE  

     
    INVITED PAPER

      Vol:
    E99-C No:11
      Page(s):
    1271-1276

    We investigate the influence of launching conditions on misalignment tolerance of pluggable ballpoint-pen interconnects, where graded-index plastic optical fibers (GI POFs) are coupled with ball lenses mounted on their end faces. The lateral-misalignment tolerance of the ballpoint-pen connector decreased with an increase in the driving current of a vertical cavity surface emitting laser (VCSEL) under the center launching condition. This was attributed to the VCSEL multimode oscillation, which increased the connector coupling loss through the higher-order guided mode launching in the GI POF and the resulting output beam expansion in the ballpoint-pen connector. The driving-current dependence of the connector coupling loss could be decreased using offset launchings. For a radial launching offset of 20µm, we could obtain coupling losses below 1dB for lateral coupling offsets of ±50µm with little dependence on the driving current. This suggests that data transmission quality for misaligned connection of the GI POFs can be improved further by optimizing launching systems for the ballpoint-pen interconnects.