The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ATI(18690hit)

8361-8380hit(18690hit)

  • Cryptanalysis of Chatterjee-Sarkar Hierarchical Identity-Based Encryption Scheme at PKC 06

    Jong Hwan PARK  Dong Hoon LEE  

     
    LETTER-Cryptography and Information Security

      Vol:
    E92-A No:7
      Page(s):
    1724-1726

    In 2006, Chatterjee and Sarkar proposed a hierarchical identity-based encryption (HIBE) scheme which can support an unbounded number of identity levels. This property is particularly useful in providing forward secrecy by embedding time components within hierarchical identities. In this paper we show that their scheme does not provide the claimed property. Our analysis shows that if the number of identity levels becomes larger than the value of a fixed public parameter, an unintended receiver can reconstruct a new valid ciphertext and decrypt the ciphertext using his or her own private key. The analysis is similarly applied to a multi-receiver identity-based encryption scheme presented as an application of Chatterjee and Sarkar's HIBE scheme.

  • Two-Quadrant Compact CMOS Current Divider

    Kuo-Jen LIN  

     
    LETTER-Circuit Theory

      Vol:
    E92-A No:7
      Page(s):
    1713-1715

    A two-quadrant CMOS current divider using a two-variable second-order Taylor series approximation is proposed. The approximation divider is realized with a compact circuit. The simulation results indicate that the compact divider has with sufficient accuracy, small distortion, and high bandwidth for only 1.8 V supply voltage.

  • Performance Evaluation of Multiuser MIMO E-SDM Systems in Time-Varying Fading Environments

    Huu Phu BUI  Yasutaka OGAWA  Toshihiko NISHIMURA  Takeo OHGANE  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E92-B No:7
      Page(s):
    2374-2388

    In this paper, the performance of multiuser MIMO E-SDM systems in downlink transmission is evaluated in both uncorrelated and correlated time-varying fading environments. In the ideal case, using the block diagonalization scheme, inter-user interference can be completely eliminated at each user; and using the E-SDM technique for each user, optimal resource allocation can be achieved, and spatially orthogonal substreams can be obtained. Therefore, a combination of the block diagonalization scheme and the E-SDM technique applied to multiuser MIMO systems gives very good results. In realistic environments, however, due to the dynamic nature of the channel and processing delay at both the transmitter and the receiver, the channel change during the delay may cause inter-user interference even if the BD scheme is used. In addition, the change may also result in large inter-substream interference and prevent optimal resource allocation from being achieved. As a result, system performance may be degraded seriously. To overcome the problem, we propose a method of channel extrapolation to compensate for the channel change. Applying our proposed method, simulation results show that much better system performance can be obtained than the conventional case. Moreover, it also shows that the system performance in the correlated fading environments is much dependent on the antenna configuration and the angle spread from the base station to scatterers.

  • InP-Based Monolithic Photonic Integrated Devices Open Access

    Liming ZHANG  Christopher R. DOERR  Pietro BERNASCONI  Lawrence L. BUHL  Nicholas SAUER  David T. NEILSON  

     
    INVITED PAPER

      Vol:
    E92-C No:7
      Page(s):
    907-914

    We present our recent work on monolithically integrated devices comprising a variety of functional elements such as high speed optical transmitters and receivers, electro-absorption modulators integrated with tunable dispersion compensators and fast-tunable wavelength converters.

  • An Efficient Bayesian Estimation of Ordered Parameters of Two Exponential Distributions

    Hideki NAGATSUKA  Toshinari KAMAKURA  Tsunenori ISHIOKA  

     
    PAPER

      Vol:
    E92-A No:7
      Page(s):
    1608-1614

    The situations where several population parameters need to be estimated simultaneously arise frequently in wide areas of applications, including reliability modeling, survival analysis and biological study. In this paper, we propose Bayesian methods of estimation of the ordered parameters of the two exponential populations, which incorporate the prior information about the simple order restriction, but sometimes breaks the order restriction. A simulation study shows that the proposed estimators are more efficient (in terms of mean square errors) than the isotonic regression of the maximum likelihood estimators with equal weights. An illustrative example is finally presented.

  • Capacity Enhancing Subcarrier Allocation in OFDM Systems with Fractional Frequency Reuse

    Seung Su HAN  Jongho PARK  Tae-Jin LEE  Hyun Gi AHN  Kyunghun JANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E92-B No:7
      Page(s):
    2538-2541

    Some wireless OFDMA communication systems support the frequency reuse factor of 1. In order to reduce co-channel interference (CCI) caused by neighbor cells, the fractional frequency reuse (FFR) can be employed. A promising frequency partitioning policy and subcarrier allocation for FFR are essential. In this letter, we employ an efficient frequency partitioning mechanism with less interference and propose an efficient subcarrier allocation algorithm to maximize the sum of users capacity under FFR. We show that the proposed algorithm has higher spectral efficiency than the conventional method as well as significantly high system fairness.

  • A Power-Saving Data Aggregation Algorithm for Byzantine Faults in Wireless Sensor Networks

    Yu-Chen KUO  Ji-Wei CHEN  

     
    PAPER-Sensing

      Vol:
    E92-B No:6
      Page(s):
    2201-2208

    The wireless sensor network is a resource-constrained self-organizing system that consists of a large number of tiny sensor nodes. Due to the low-cost and low-power nature of sensor nodes, sensor nodes are failure-prone when sensing and processing data. Most presented fault-tolerant research for wireless sensor networks focused on crash faults or power faults and less on Byzantine faults. Hence, in this paper, we propose a power-saving data aggregation algorithm for Byzantine faults to provide power savings and high success rates even in the environment with high fault rates. The algorithm utilizes the concept of Byzantine masking quorum systems to mask the erroneous values and to finally determine the correct value. Our simulation results demonstrate that when the fault rate of sensor nodes is up to 50%, our algorithm still has 48% success rate to obtain the correct value. Under the same condition, other fault-tolerant algorithms are almost failed.

  • Dynamic Splitting: An Enhanced Query Tree Protocol for RFID Tag Collision Arbitration

    Jihoon CHOI  Wonjun LEE  

     
    LETTER-Network

      Vol:
    E92-B No:6
      Page(s):
    2283-2286

    To reduce RFID tag identification delay, we propose a novel Dynamic Splitting protocol (DS) which is an improvement of the Query tree protocol (QT). DS controls the number of branches of a tree dynamically. An improved performance of DS relative to QT is verified by analytical results and simulation studies.

  • Interactive Region Matching for 2D Animation Coloring Based on Feature's Variation

    Pablo GARCIA TRIGO  Henry JOHAN  Takashi IMAGIRE  Tomoyuki NISHITA  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E92-D No:6
      Page(s):
    1289-1295

    We propose an interactive method for assisting the coloring process of 2D hand-drawn animated cartoons. It segments input frames (each hand-drawn drawing of the cartoon) into regions (areas surrounded by closed lines. E.g. the head, the hands) extracts their features, and then matches the regions between frames, allowing the user to fix coloring mistakes interactively. Its main contribution consists in storing matched regions in lists called "chains" for tracking how the region features vary along the animation. Consequently, the matching rate is improved and the matching mistakes are reduced, thus reducing the total effort needed until having a correctly colored cartoon.

  • An L1 Cache Design Space Exploration System for Embedded Applications

    Nobuaki TOJO  Nozomu TOGAWA  Masao YANAGISAWA  Tatsuo OHTSUKI  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E92-A No:6
      Page(s):
    1442-1453

    In an embedded system where a single application or a class of applications is repeatedly executed on a processor, its cache configuration can be customized such that an optimal one is achieved. We can have an optimal cache configuration which minimizes overall memory access time by varying the three cache parameters: the number of sets, a line size, and an associativity. In this paper, we first propose two cache simulation algorithms: CRCB1 and CRCB2, based on Cache Inclusion Property. They realize exact cache simulation but decrease the number of cache hit/miss judgments dramatically. We further propose three more cache design space exploration algorithms: CRMF1, CRMF2, and CRMF3, based on our experimental observations. They can find an almost optimal cache configuration from the viewpoint of access time. By using our approach, the number of cache hit/miss judgments required for optimizing cache configurations is reduced to 1/10-1/50 compared to conventional approaches. As a result, our proposed approach totally runs an average of 3.2 times faster and a maximum of 5.3 times faster compared to the fastest approach proposed so far. Our proposed cache simulation approach achieves the world fastest cache design space exploration when optimizing total memory access time.

  • 2-Step Maximum Likelihood Channel Estimation for Multicode DS-CDMA with Frequency-Domain Equalization

    Yohei KOJIMA  Kazuaki TAKEDA  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E92-B No:6
      Page(s):
    2065-2071

    Frequency-domain equalization (FDE) based on the minimum mean square error (MMSE) criterion can provide better downlink bit error rate (BER) performance of direct sequence code division multiple access (DS-CDMA) than the conventional rake combining in a frequency-selective fading channel. FDE requires accurate channel estimation. In this paper, we propose a new 2-step maximum likelihood channel estimation (MLCE) for DS-CDMA with FDE in a very slow frequency-selective fading environment. The 1st step uses the conventional pilot-assisted MMSE-CE and the 2nd step carries out the MLCE using decision feedback from the 1st step. The BER performance improvement achieved by 2-step MLCE over pilot assisted MMSE-CE is confirmed by computer simulation.

  • Performance Analysis of a De-correlated Modified Code Tracking Loop for Synchronous DS-CDMA System under Multiuser Environment

    Ya-Ting WU  Wai-Ki WONG  Shu-Hung LEUNG  Yue-Sheng ZHU  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E92-B No:6
      Page(s):
    1991-1999

    This paper presents the performance analysis of a De-correlated Modified Code Tracking Loop (D-MCTL) for synchronous direct-sequence code-division multiple-access (DS-CDMA) systems under multiuser environment. Previous studies have shown that the imbalance of multiple access interference (MAI) in the time lead and time lag portions of the signal causes tracking bias or instability problem in the traditional correlating tracking loop like delay lock loop (DLL) or modified code tracking loop (MCTL). In this paper, we exploit the de-correlating technique to combat the MAI at the on-time code position of the MCTL. Unlike applying the same technique to DLL which requires an extensive search algorithm to compensate the noise imbalance which may introduce small tracking bias under low signal-to-noise ratio (SNR), the proposed D-MCTL has much lower computational complexity and exhibits zero tracking bias for the whole range of SNR, regardless of the number of interfering users. Furthermore, performance analysis and simulations based on Gold codes show that the proposed scheme has better mean square tracking error, mean-time-to-lose-lock and near-far resistance than the other tracking schemes, including traditional DLL (T-DLL), traditional MCTL (T-MCTL) and modified de-correlated DLL (MD-DLL).

  • Feature Interaction Verification Using Unbounded Model Checking with Interpolation

    Takafumi MATSUO  Tatsuhiro TSUCHIYA  Tohru KIKUNO  

     
    PAPER-Dependable Computing

      Vol:
    E92-D No:6
      Page(s):
    1250-1259

    In this paper, we propose an unbounded model checking method for feature interaction verification for telecommunication systems. Unbounded model checking is a SAT-based verification method and has attracted recent attention as a powerful approach. The interpolation-based approach is one of the most promising unbounded model checking methods and has been proven to be effective for hardware verification. However, the application of unbounded model checking to asynchronous systems, such as telecommunication systems, has rarely been practiced. This is because, with the conventional encoding, the behavior of an asynchronous system can only be represented as a large propositional formula, thus resulting in large computational cost. To overcome this problem we propose to use a new scheme for encoding the behavior of the system and adapt the unbounded model checking algorithm to this encoding. By exploiting the concurrency of an asynchronous system, this encoding scheme allows a very concise formula to represent system's behavior. To demonstrate the effectiveness of our approach, we conduct experiments where 21 pairs of telecommunication services are verified using several methods including ours. The results show that our approach exhibits significant speed-up over unbounded model checking using the traditional encoding.

  • Performance Analysis of the ertPS Algorithm and Enhanced ertPS Algorithm for VoIP Services in IEEE 802.16e Systems

    Bong Joo KIM  Gang Uk HWANG  

     
    PAPER-Network

      Vol:
    E92-B No:6
      Page(s):
    2000-2007

    In this paper, we analyze the extended real-time Polling Service (ertPS) algorithm in IEEE 802.16e systems, which is designed to support Voice-over-Internet-Protocol (VoIP) services with data packets of various sizes and silence suppression. The analysis uses a two-dimensional Markov Chain, where the grant size and the voice packet state are considered, and an approximation formula for the total throughput in the ertPS algorithm is derived. Next, to improve the performance of the ertPS algorithm, we propose an enhanced uplink resource allocation algorithm, called the e 2rtPS algorithm, for VoIP services in IEEE 802.16e systems. The e 2rtPS algorithm considers the queue status information and tries to alleviate the queue congestion as soon as possible by using remaining network resources. Numerical results are provided to show the accuracy of the approximation analysis for the ertPS algorithm and to verify the effectiveness of the e 2rtPS algorithm.

  • Fast Packet Classification Using Multi-Dimensional Encoding

    Chi Jia HUANG  Chien CHEN  

     
    PAPER-Internet

      Vol:
    E92-B No:6
      Page(s):
    2044-2053

    Internet routers need to classify incoming packets quickly into flows in order to support features such as Internet security, virtual private networks and Quality of Service (QoS). Packet classification uses information contained in the packet header, and a predefined rule table in the routers. Packet classification of multiple fields is generally a difficult problem. Hence, researchers have proposed various algorithms. This study proposes a multi-dimensional encoding method in which parameters such as the source IP address, destination IP address, source port, destination port and protocol type are placed in a multi-dimensional space. Similar to the previously best known algorithm, i.e., bitmap intersection, multi-dimensional encoding is based on the multi-dimensional range lookup approach, in which rules are divided into several multi-dimensional collision-free rule sets. These sets are then used to form the new coding vector to replace the bit vector of the bitmap intersection algorithm. The average memory storage of this encoding is θ (LNlog N) for each dimension, where L denotes the number of collision-free rule sets, and N represents the number of rules. The multi-dimensional encoding practically requires much less memory than bitmap intersection algorithm. Additionally, the computation needed for this encoding is as simple as bitmap intersection algorithm. The low memory requirement of the proposed scheme means that it not only decreases the cost of packet classification engine, but also increases the classification performance, since memory represents the performance bottleneck in the packet classification engine implementation using a network processor.

  • Applicability of Large Effective Area PCF to DRA Transmission

    Chisato FUKAI  Kazuhide NAKAJIMA  Takashi MATSUI  

     
    LETTER-Optical Fiber for Communications

      Vol:
    E92-B No:6
      Page(s):
    2251-2253

    We describe the applicability of photonic crystal fiber (PCF) with an enlarged effective area Aeff to a distributed Raman amplification (DRA) transmission. We investigate the DRA transmission performance numerically over a large Aeff PCF taking account of the signal-to-noise ratio (SNR) improvement RSNR in the S, C, and L bands. We show that an RSNR of 3 dB can be expected by utilizing DRA with a maximum pump power of 500 mW when the Aeff of the PCF is 230 µm2.

  • CFAR Detector Based on Goodness-of-Fit Tests

    Xiaobo DENG  Yiming PI  Zhenglin CAO  

     
    PAPER-Sensing

      Vol:
    E92-B No:6
      Page(s):
    2209-2217

    This paper develops a complete architecture for constant false alarm rate (CFAR) detection based on a goodness-of-fit (GOF) test. This architecture begins with a logarithmic amplifier, which transforms the background distribution, whether Weibull or lognormal into a location-scale (LS) one, some relevant properties of which are exploited to ensure CFAR. A GOF test is adopted at last to decide whether the samples under test belong to the background or are abnormal given the background and so should be declared to be a target of interest. The performance of this new CFAR scheme is investigated both in homogeneous and multiple interfering targets environment.

  • Reduced Constraint Set Linear Program for Tone Reservation in Multicarrier Modulation

    Abolfazl GHASSEMI  T. Aaron GULLIVER  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E92-B No:6
      Page(s):
    2231-2234

    Tone reservation (TR) has been proposed for peak to average power reduction (PAPR) in real-baseband multicarrier systems [1]. In this technique, the peak reduction signal is computed by optimization via linear programming (LP). As shown in [1], the computational complexity of the LP optimization is largely determined by the complexity of the inverse fast Fourier transform (IFFT) algorithm. In this paper, we use submatrices of the inverse fast Fourier transform (IFFT) to reduce the number of constraints in the LP-based optimization. We show that a significant complexity reduction can be achieved compared to the conventional TR algorithm, with similar PAPR reduction.

  • A Scenario-Based Protocol Checker for Public-Key Authentication Scheme

    Takamichi SAITO  

     
    PAPER-Application Information Security

      Vol:
    E92-D No:6
      Page(s):
    1268-1279

    Security protocol provides communication security for the internet. One of the important features of it is authentication with key exchange. Its correctness is a requirement of the whole of the communication security. In this paper, we introduce three attack models realized as their attack scenarios, and provide an authentication-protocol checker for applying three attack-scenarios based on the models. We also utilize it to check two popular security protocols: Secure SHell (SSH) and Secure Socket Layer/Transport Layer Security (SSL/TLS).

  • A Scalable Tracking System Using Ultrasonic Communication

    Toshio ITO  Tetsuya SATO  Kan TULATHIMUTTE  Masanori SUGIMOTO  Hiromichi HASHIZUME  

     
    PAPER-Ultrasonics

      Vol:
    E92-A No:6
      Page(s):
    1408-1416

    We have introduced a new ultrasonic-based localization method that requires only one ultrasonic receiver to locate transmitters. In our previous reports [1],[2], we conducted several fundamental experiments, and proved the feasibility and accuracy of our system. However the performance in a more realistic environment has not yet been evaluated. In this paper, we have extended our localization system into a robot tracking system, and conducted experiments where the system tracked a moving robot. Localization was executed both by our proposed method and by the conventional TOA method. The experiment was repeated with different density of receivers. Thus we were able to compare the accuracy and the scalability between our proposed method and the conventional method. As a result 90-percentile of the position error was from 6.2 cm to 14.6 cm for the proposed method, from 4.0 cm to 6.1 cm for the conventional method. However our proposed method succeeded in calculating the position of the transmitter in 95% out of total attempts of localization with sparse receivers (4 receivers in about 5 m 5 m area), whereas the success rate was only 31% for the conventional method. From the result we concluded that although the proposed method is less accurate it can cover a wider area with sparse receivers than the conventional method. In addition to the dynamic tracking experiments, we also conducted some localization experiments where the robot stood still. This was because we wanted to investigate the reason why the localization accuracy degraded in the dynamic tracking. According to the result, the degradation of accuracy might be due to the systematic error in localization which is dependent on the geometric relationship between the transmitter and the receiver.

8361-8380hit(18690hit)