The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] BEP(4hit)

1-4hit
  • Asymptotic Error Probability Analysis of DQPSK/DDQPSK over Nakagami-m Fading Channels

    Hoojin LEE  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E99-B No:1
      Page(s):
    152-156

    In this paper, we derive two simple asymptotic closed-form formulas for the average bit error probability (BEP) of differential quaternary phase shift keying (DQPSK) with Gray encoding and a simple asymptotic approximation for the average symbol error probability (SEP) of doubly-differential quaternary phase shift keying (DDQPSK) in Nakagami-m fading channels. Compared with the existing BEP/SEP expressions, the derived concise formulas are much more effective in evaluating the asymptotic properties of DQPSK/DDQPSK with various Nakagami fading parameters, the accuracy of which is verified by extensive numerical results.

  • The Optimal MMSE-Based OSIC Detector for MIMO System

    Yunchao SONG  Chen LIU  Feng LU  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:1
      Page(s):
    232-239

    The ordered successive interference cancellation (OSIC) detector based on the minimum mean square error (MMSE) criterion has been proved to be a low-complexity detector with efficient bit error rate (BER) performance. As the well-known MMSE-Based OSIC detector, the MMSE-Based vertical Bell Laboratories Layered Space-Time (VBLAST) detector, whose computational complexity is cubic, can not attain the minimum BER performance. Some approaches to reducing the BER of the MMSE-Based VBLAST detector have been contributed, however these improvements have large computational complexity. In this paper, a low complexity MMSE-Based OSIC detector called MMSE-OBEP (ordering based on error probability) is proposed to improve the BER performance of the previous MMSE-Based OSIC detectors, and it has cubic complexity. The proposed detector derives the near-exact error probability of the symbols in the MMSE-Based OSIC detector, thus giving priority to detect the symbol with the smallest error probability can minimize the error propagation in the MMSE-Based OSIC detector and enhance the BER performance. We show that, although the computational complexity of the proposed detector is cubic, it can provide better BER performance than the previous MMSE-Based OSIC detector.

  • Performance of Digital Modulation in Double Nakagami-m Fading Channels with MRC Diversity

    Wannaree WONGTRAIRAT  Pornchai SUPNITHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E92-B No:2
      Page(s):
    559-566

    In this paper, we derive the average bit error probability (BEP) for common digital modulation schemes and the outage probability of double Nakagami-m channels with MRC diversity. First, the probability density function (PDF) and moment generating function (MGF) of received signal with maximal ratio combining (MRC) receiver diversity are computed. The derived MGF results are simplified in terms of a generalized hypergeometric function 2F0. The derived BEP expressions find applications in existing wireless systems such as satellite mobile communication system, mobile-to-mobile communication system and multiple-input multiple-output (MIMO) wireless communication system. In addition, the obtained general MGF expression considers combined Rayleigh Nakagami-m, double Rayleigh, single Rayleigh, single Nakagami-m, and non-fading or additive white Gaussian noise (AWGN) channels as special cases. The simulation results agree well with the theoretical results.

  • Derivation on Bit Error Probability of Coded QAM Using Integer Codes

    Hristo KOSTADINOV  Hiroyoshi MORITA  Nikolai MANEV  

     
    PAPER-Communication Theory and Signals

      Vol:
    E87-A No:12
      Page(s):
    3397-3403

    In this paper we present the exact expressions for the bit error probability over a Gaussian noise channel of coded QAM using single error correcting integer codes. It is shown that the proposed integer codes have a better performance with respect to the lower on the bit error probability for trellis coded modulation.