The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Chordal ring network(2hit)

1-2hit
  • Algorithms to Realize an Arbitrary BPC Permutation in Chordal Ring Networks and Mesh Connected Networks

    Hiroshi MASUYAMA  

     
    PAPER-Software Theory

      Vol:
    E77-D No:10
      Page(s):
    1118-1129

    A multiple instruction stream-multiple data stream (MIMD) computer is a parallel computer consisting of a large number of identical processing elements. The essential feature that distinguishes one MIMD computer family from another is the interconnection network. In this paper, 2 representative types of interconnection networks are dealt with the chordal ring network and the mesh connected network. A family of regular graphs of degree 3, called chordal rings is presented as a possible candidate for the implementation of a distributed system and for fault-tolerant architectures. The symmetry of graphs makes it possible to determine message routing by using a simple distributed algorithm. Another candidate having the same property is the mesh connected networks. Arbitrary data permutations are generally accomplished by sorting. For certain classes of permutations, however, there exist algorithms that are more efficient than the best sorting algorithm. One such class is the bit permute complement (BPC) class of permutations. The class of BPC permutations includes many of the frequently occurring permutations such as bit reversal, bit shuffle, bit complement, matrix transpose, etc. In this paper, we evaluate the abilities of the above networks to realize BPC permutations. In this paper, we, first, develop algorithms required 2 token storage registers in each node to realize an arbitrary BPC permutaion in both chordal ring networks and mesh connected networks. We next evaluate the ability to realize BPC permutations in these networks of an arbitrary size by estimating the number of required routing steps.

  • Distributed Leader Election on Chordal Ring Networks

    Koji NAKANO  Toshimitsu MASUZAWA  Nobuki TOKURA  

     
    PAPER

      Vol:
    E75-D No:1
      Page(s):
    58-63

    A chordal ring network is a processor network on which n processors are arranged to a ring with additional chords. We study a distributed leader election algorithm on chordal ring networks and present trade-offs between the message complexity and the number of chords at each processor and between the message complexity and the length of chords as follows:For every d(1dlog* n1) there exists a chordal ring network with d chords at each processor on which the message complexity for leader election is O(n(log(d1)nlog* n)).For every d(1dlog* n1) there exists a chordal ring network with log(d1)nd1 chords at each processor on which the message complexity for leader election is O(dn).For every m(2mn/2) there exists a chordal ring network whose chords have at most length m such that the message complexity for leader election is O((n/m)log n).