The search functionality is under construction.

Keyword Search Result

[Keyword] IEEE 802.11n(10hit)

1-10hit
  • Multi-User MIMO Channel Emulator with Automatic Channel Sounding Feedback

    Tran Thi Thao NGUYEN  Leonardo LANANTE  Yuhei NAGAO  Hiroshi OCHI  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E99-A No:11
      Page(s):
    1918-1927

    Wireless channel emulators are used for the performance evaluation of wireless systems when actual wireless environment test is infeasible. The main contribution of this paper is the design of a MU-MIMO channel emulator capable of sending channel feedback automatically to the access point from the generated channel coefficients after the programmable time duration. This function is used for MU beamforming features of IEEE 802.11ac. The second contribution is the low complexity design of MIMO channel emulator with a single path implementation for all MIMO channel taps. A single path design allows all elements of the MIMO channel matrix to use only one Gaussian noise generator, Doppler filter, spatial correlation channel and Rician fading emulator to minimize the hardware complexity. In addition, single path implementation allows the addition of the feedback channel output with only a few additional non-sequential elements which would otherwise double in a parallel implementation. To demonstrate the functionality of our MU-MIMO channel emulator, we present actual hardware emulator results of MU-BF receive signal constellation on oscilloscope.

  • 3-Port MIMO DRAs for 2.4GHz WLAN Communications

    Katsunori ISHIMIYA  Chi-Yuk CHIU  Zhinong YING  Jun-ichi TAKADA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2016/04/04
      Vol:
    E99-B No:9
      Page(s):
    2047-2054

    A compact multiple-input multiple-output (MIMO) dielectric resonator antenna (DRA) was proposed and studied. The DRA consists of three antenna ports. The antennas operate at 2.4GHz, where one of the antenna ports was placed at the center and resonates in the monopole mode, and the two other ports were located at the sides and resonate in the TEy111 mode. Both simulation and measurements were carried out, and reasonably good agreement was obtained. In addition, a study for miniaturization with different permittivities for the DRA and a comparison of the throughput with the reference antennas of a commercial wireless LAN router were performed. Our proposed MIMO DRA gave similar performance as that of the reference antennas but was more compact in size.

  • An Access-Point Aggregation Approach for Energy-Saving Wireless Local Area Networks

    Md. Ezharul ISLAM  Nobuo FUNABIKI  Toru NAKANISHI  Kan WATANABE  

     
    PAPER

      Vol:
    E96-B No:12
      Page(s):
    2986-2997

    Nowadays, with spreads of inexpensive small communication devices, a number of wireless local area networks (WLANs) have been deployed even in the same building for the Internet access services. Their wireless access-points (APs) are often independently installed and managed by different groups such as departments or laboratories in a university or a company. Then, a user host can access to multiple WLANs by detecting signals from their APs, which increases the energy consumption and the operational cost. It may also degrade the communication performance by increasing interferences. In this paper, we present an AP aggregation approach to solve these problems in multiple WLAN environments by aggregating deployed APs of different groups into limited ones using virtual APs. First, we formulate the AP aggregation problem as a combinatorial optimization problem and prove the NP-completeness of its decision problem. Then, we propose its heuristic algorithm composed of five phases. We verify the effectiveness through extensive simulations using the WIMNET simulator.

  • Distributed Spatial Interference Coordination for IEEE 802.11n Wireless Networks

    Rui CHEN  Changle LI  Jiandong LI  

     
    LETTER

      Vol:
    E95-B No:4
      Page(s):
    1297-1299

    The 802.11n networks with MIMO technique provide a spatial degree of freedom for dealing with co-channel interference. In this letter, our proposed spatial interference coordination scheme is achieved by distributed precoding for the downlink and distributed multi-user detection for the uplink. Simulation results validate the proposed scheme in terms of the downlink and uplink maximum achievable rates at each AP.

  • Distributed Medium Access Control with SDMA Support for WLANs

    Sheng ZHOU  Zhisheng NIU  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E93-B No:4
      Page(s):
    961-970

    With simultaneous multi-user transmissions, spatial division multiple access (SDMA) provides substantial throughput gain over the single user transmission. However, its implementation in WLANs with contention-based IEEE 802.11 MAC remains challenging. Problems such as coordinating and synchronizing the multiple users need to be solved in a distributed way. In this paper, we propose a distributed MAC protocol for WLANs with SDMA support. A dual-mode CTS responding mechanism is designed to accomplish the channel estimation and user synchronization required for SDMA. We analytically study the throughput performance of the proposed MAC, and dynamic parameter adjustment is designed to enhance the protocol efficiency. In addition, the proposed MAC protocol does not rely on specific physical layer realizations, and can work on legacy IEEE 802.11 equipment with slight software updates. Simulation results show that the proposed MAC outperforms IEEE 802.11 significantly, and that the dynamic parameter adjustment can effectively track the load variation in the network.

  • A New Channel-Aware Rate Adaptation in High Speed WLANs

    Navrati SAXENA  Abhishek ROY  

     
    LETTER-Terrestrial Radio Communications

      Vol:
    E92-B No:6
      Page(s):
    2345-2348

    In this letter we propose an advanced rate adaptation algorithm that intelligently uses the channel statistics to make fast and efficient selection of transmission rates. Our implementation and simulation results prove that the proposed strategy achieves major latency and throughput improvements on 802.11n products and existing related protocols. The entire work is on a software module, thus providing adaptability, cost-effectiveness, with no hardware changes.

  • Performance Improvement of Wireless Mesh Networks by Using a Combination of Channel-Bonding and Multi-Channel Techniques

    Liang XU  Koji YAMAMOTO  Hidekazu MURATA  Susumu YOSHIDA  

     
    PAPER

      Vol:
    E91-B No:10
      Page(s):
    3103-3112

    In the present paper, the use of a combination of channel-bonding and multi-channel techniques is proposed to improve the performance of wireless mesh networks (WMNs). It is necessary to increase the network throughput by broadening the bandwidth, and two approaches to effectively utilize the broadened bandwidth can be considered. One is the multi-channel technique, in which multiple separate frequency channels are used simultaneously for information transmission. The other is the channel-bonding technique used in IEEE 802.11n, which joins multiple frequency channels into a single broader channel. The former can reduce the channel traffic to mitigate the effect of packet collision, while the latter can increase the transmission rate. In the present paper, these two approaches are compared and their respective advantages are clarified in terms of the network throughput and delay performance assuming the same total bandwidth and a CSMA protocol. Our numerical and simulation results indicate that under low-traffic conditions, the channel-bonding technique can achieve low delay, while under traffic congestion conditions, the network performance can be improved by using multi-channel technique. Based on this result, the use of a combination of these two techniques is proposed for a WMN, and show that it is better to use a proper channel technique according to the network traffic condition. The findings of the present study also contribute to improving the performance of a multimedia network, which consists of different traffic types of applications.

  • Proposal of Receive Antenna Selection Methods for MIMO-OFDM System

    Quoc Tuan TRAN  Shinsuke HARA  Kriangsak SIVASONDHIVAT  Jun-ichi TAKADA  Atsushi HONDA  Yuuta NAKAYA  Kaoru YOKOO  Ichirou IDA  Yasuyuki OISHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:2
      Page(s):
    505-517

    The combination of Multiple-Input Multiple-Output (MIMO) and Orthogonal Frequency Division Multiplexing (OFDM) technologies gives wireless communications systems the advantages of lower bit error rate (BER) and higher data rate in frequency-selective fading environments. However, the main drawbacks of MIMO systems are their high complexity and high cost. Therefore, antenna selection in MIMO systems has been shown to be an effective way to overcome the drawbacks. In this paper, we propose two receive antenna selection methods for a MIMO-OFDM system with radio frequency (RF) switches and polarization antenna elements at the receiver side, taking into consideration low computational complexity. The first method selects a set of polarization antenna elements which gives lower correlation between received signals and larger received signal power, thus achieves a lower BER with low computational complexity. The second method first selects a set of polarization antenna elements based on the criterion of the first method and another set of polarization antenna elements based on the criterion of minimizing the correlation between the received signals; it then calculates the signal-to-interference-plus-noise power ratio (SINR) of the two sets and selects a set with larger SINR. As a result, the second method achieves a better BER than the first one but it also requires higher computational complexity than the first one. We use the measured channel data to evaluate the performance of the two methods and show that they work effectively for the realistic channel.

  • Experimental Studies on a Decision-Feedback Channel Tracking Scheme Implemented in FPGA for MIMO-OFDM Systems

    Yusuke ASAI  Wenjie JIANG  Takeshi ONIZAWA  

     
    PAPER-MIMO-OFDM

      Vol:
    E90-A No:11
      Page(s):
    2423-2430

    This paper describes the experimental evaluation of a testbed with a simple decision-feedback channel tracking scheme for MIMO-OFDM systems. The channel tracking scheme periodically estimates the channel state matrix for each subcarrier from received signals and replicas of the transmitted signal. The estimated channel state matrices, which are obtained at mutually different timings, are combined based on maximum ratio combining and used for MIMO signal detection. The testbed was implemented on field programmable gate arrays (FPGAs) of 1/5 scale, which confirms the implementation feasibility of the channel tracking scheme. The packet error rate (PER) and mobility performance of the testbed were measured. The testbed employed a 22 MIMO channel, zero-forcing algorithm for MIMO signal detection, 16QAM for the subcarrier modulation scheme, and coding rate of 1/2. The proposed scheme suppressed the increase in the required SNR for PER of 10-2 to less than 1 dB when the relative velocity between the transmitter and the receiver was less than 45 km/h assuming 5 GHz band operation. In addition, the proposed scheme offers 6.3% better throughput than the conventional scheme. The experimental results demonstrate that the channel tracking scheme implemented in the testbed effectively tracks the fluctuation of a MIMO channel.

  • A Simple and Feasible Decision-Feedback Channel Tracking Scheme for MIMO-OFDM Systems

    Yusuke ASAI  Wenjie JIANG  Takeshi ONIZAWA  Atsushi OHTA  Satoru AIKAWA  

     
    PAPER

      Vol:
    E90-B No:5
      Page(s):
    1052-1060

    This paper proposes a simple and feasible decision-feedback channel tracking scheme for multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems designed for wireless local area networks (LANs). In the proposed scheme, the channel state matrix for each subcarrier is tentatively estimated from a replica matrix of the transmitted signals. The estimated channel matrices, each derived at a different timing, are combined, and the previously estimated channel matrices are replaced with the latest ones. Unlike conventional channel tracking schemes based on a Kalman filter, the proposed scheme needs no statistical information about a MIMO channel, which makes the receiver structure quite simple. The packet error rate (PER) performances for the proposed scheme are evaluated on computer simulations. When there are three transmit and receive antennas, the subcarrier modulation scheme is 64 QAM, and the coding rate is 3/4, the proposed scheme keeps the SNR degradation at PER of 1e-2 less than 0.1 dB when the velocity of receiver is 3 km/h in an indoor office environment at 5 GHz band. In addition, compared to the conventional channel tracking scheme based on known pilot symbols, the proposed scheme improves throughput performance by 13.8% because it does not need pilot symbols. These results demonstrate that the proposed channel tracking scheme is simple and feasible for implementation in MIMO-OFDM systems based on wireless LANs.