The search functionality is under construction.

Keyword Search Result

[Keyword] ITU-R(5hit)

1-5hit
  • Extension of ITU-R Site-General Path Loss Model in Urban Areas Based on Measurements from 2 to 66GHz Bands Open Access

    Motoharu SASAKI  Mitsuki NAKAMURA  Nobuaki KUNO  Wataru YAMADA  Naoki KITA  Takeshi ONIZAWA  Yasushi TAKATORI  Hiroyuki NAKAMURA  Minoru INOMATA  Koshiro KITAO  Tetsuro IMAI  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2021/01/08
      Vol:
    E104-B No:7
      Page(s):
    849-857

    Path loss in high frequency bands above 6GHz is the most fundamental and significant propagation characteristic of IMT-2020. To develop and evaluate such high frequency bands, ITU-R SG5 WP5D recently released channel models applicable up to 100GHz. The channel models include path loss models applicable to 0.5-100GHz. A path loss model is used for cell design and the evaluation of the radio technologies, which is the main purpose of WP5D. Prediction accuracy in various locations, Tx positions, frequency bands, and other parameters are significant in cell design. This article presents the prediction accuracy of UMa path loss models which are detailed in Report ITU-R M.2412 for IMT-2020. We also propose UMa_A' as an extension model of UMa_A. While UMa_A applies different equations to the bands below and above 6GHz to predict path loss, UMa_A' covers all bands by using the equations of UMa_A below 6GHz. By using the UMa_A' model, we can predict path loss by taking various parameters (such as BS antenna height) into account over a wide frequency range (0.5-100GHz). This is useful for considering the deployment of BS antennas at various positions with a wide frequency band. We verify model accuracy by extensive measurements in the frequency bands from 2 to 66GHz, distances up to 1600 m, and an UMa environment with three Tx antenna heights. The UMa_A' extension model can predict path loss with the low RMSE of about 7dB at 2-26.4GHz, which is more accurate than the UMa_A and UMa_B models. Although the applicability of the UMa_A' model at 66GHz is unclear and needs further verification, the evaluation results for 66GHz demonstrate that the antenna height may affect the prediction accuracy at 66GHz.

  • ITU-R Standardization Activities on Cognitive Radio Open Access

    Hitoshi YOSHINO  

     
    INVITED PAPER

      Vol:
    E95-B No:4
      Page(s):
    1036-1043

    Cognitive radio is an emerging technology to further improve the efficiency of spectrum use. Due to the nature of the technology, it has many facets, including its enabling technologies, its implementation issues and its regulatory implications. In ITU-R (International Telecommunications Union – Radiocommunication sector), cognitive radio systems are currently being studied so that ITU-R can have a clear picture on this new technology and its potential regulatory implications, from a viewpoint of global spectrum management. This paper introduces the recent results of the ITU-R studies on cognitive radio on both regulatory and technical aspects. This paper represents a personal opinion of the author, but not an official view of the ITU-R.

  • Overview of Research, Development, Standardization, and Regulation Activities in NICT UWB Project

    Ken-ichi TAKIZAWA  Huan-Bang LI  Iwao NISHIYAMA  Jun-ichi TAKADA  Ryuji KOHNO  

     
    INVITED PAPER

      Vol:
    E89-A No:11
      Page(s):
    2996-3005

    This paper presents an overview of research, development, standardization and regulation activities on ultra wideband (UWB) technologies in National Institute of Information and Communications Technology (NICT). NICT started a project on UWB technologies since 2002, and organized UWB consortium in cooperation with more than 20 companies and 7 universities in Japan. Up to now, we have been conducting numerous UWB R&D including the following main works: i) key technology development such as MMIC chips, antennas and other devices, ii) measurement and channel modeling for UWB signal propagation, iii) standardization in international activities of IEEE 802.15, ITU-R TG1/8 as well as in a national regulatory committee of Ministry of Internal Affair and Communications (MIC). The UWB systems we have studied occupy frequency bands range from microwave band (3-5 GHz) to quasi-millimeter wave band (24-29 GHz). Various prototype UWB systems including multi-functional terminals have been developed. The output of NICT has been succeeded by industrial parties with with national and international standardization and regulation.

  • Enhanced Urban Path Loss Prediction Model with New Correction Factors

    Do-Young KWAK  Chang-Hoon LEE  Seong-Cheol KIM  Jae-Woo LIM  Sung-Soo LEE  

     
    LETTER-Antennas and Propagation

      Vol:
    E89-B No:4
      Page(s):
    1459-1463

    Modification of ITU-R P.1411 model to enhance the prediction accuracy in urban environments having variable heights of buildings is proposed in this paper by introducing two kinds of novel correction factors. One is considering the relationship of the highest building height and the transmitter (Tx) antenna height, and the other is considering the effect of receiver (Rx) position on crossroads. After introducing two correction factors, the prediction accuracy is shown to be improved.

  • Measurement Techniques of Emissions from Ultra Wideband Devices

    Jun-ichi TAKADA  Shinobu ISHIGAMI  Juichi NAKADA  Eishin NAKAGAWA  Masaharu UCHINO  Tetsuya YASUI  

     
    INVITED PAPER

      Vol:
    E88-A No:9
      Page(s):
    2252-2263

    This paper describes the measurement techniques of emissions from UWB devices discussed in ITU-R task group (TG) 1/8 to study the compatibility between ultra-wideband (UWB) devices and radiocommunication services. This paper also provides the background idea behind the measurement methods, as the final output of the discussion, i.e. ITU-R Recommendation, will not contain any citations to the references, nor any "educational" description of the theoretical background.