1-4hit |
Takafumi HAYASHI Yodai WATANABE Anh T. PHAM Toshiaki MIYAZAKI Shinya MATSUFUJI Takao MAEDA
The present paper introduces a novel method for the construction of a class of sequences that have a zero-correlation zone. For the proposed sequence set, both the cross-correlation function and the side lobe of the auto-correlation function are zero for phase shifts within the zero-correlation zone. The proposed scheme can generate a set of sequences of length 8n2 from an arbitrary Hadamard matrix of order n and a set of 2n trigonometric-like function sequences of length 4n. The proposed sequence construction can generate an optimal zero-correlation zone sequence set that satisfies the theoretical bound on the number of members for the given zero-correlation zone and sequence period. The auto-correlation function of the proposed sequence is equal to zero for all nonzero phase shifts. The peak factor of the proposed sequence set is √2, and the peak factor of a single trigonometric function is equal to √2. Assigning the sequences of the proposed set to a synthetic aperture ultrasonic imaging system would improve the S/N of the obtained image. The proposed sequence set can also improve the performance of radar systems. The performance of the applications of the proposed sequence sets are evaluated.
Kun LI Kazuhiro HONDA Koichi OGAWA
This paper presents a new methodology for realizing a Rice channel in BAN Over-The-Air (OTA) testing using a fading emulator with a dynamic phantom. For the proposed apparatus to be effective, the fading emulator must be provided with an appropriate K-factor that represents the actual propagation environment indoors. Further, an implementation of the Rice channel to the proposed fading emulator in a BAN situation is presented. Thereafter, a calibration method for the fading emulator to adjust the actual K-factor of the on-body Rice channel is advanced. This calibration method is validated by analyzing the variations in the instantaneous K-factor attributed to the arm-swinging motion. Finally, an experiment is conducted for a continuous human walking motion with the fading emulator using an arm-swinging dynamic phantom. The results show that the developed fading emulator allows BAN-OTA testing to replicate the actual Rice channel propagation environment with the consideration of the dynamic characteristics of human walking motion.
Kazi OBAIDULLAH Constantin SIRITEANU Shingo YOSHIZAWA Yoshikazu MIYANAGA
Genetic algorithm (GA) is now an important tool in the field of wireless communications. For multiple-input/multiple-output (MIMO) wireless communications system employing spatial multiplexing transmission, we evaluate the effects of GA parameters value on channel parameters in fading channels. We assume transmit-correlated Rayleigh and Rician fading with realistic Laplacian power azimuth spectrum. Azimuth spread (AS) and Rician K-factor are selected according to the measurement-based WINNER II channel model for several scenarios. Herein we have shown the effects of GA parameters and channel parameters in different WINNER II scenarios (i.e., AS and K values) and rank of the deterministic components. We employ meta GA that suitably selects the population (P), generation (G) and mutation probability (pm) for the inner GA. Then we show the cumulative distribution function (CDF) obtain experimentally for the condition number C of the channel matrix H. It is found that, GA parameters depend on the channel parameters, i.e., GA parameters are the functions of the channel parameters. It is also found that for the poorer channel conditions smaller GA parameter values are required for MIMO detection. This approach will help to achieve maximum performance in practical condition for the lower numerical complexity.
Kentaro NISHIMORI Keisuke KUSUMI Misaki HORIO Koshiro KITAO Tetsuro IMAI
In LTE-Advanced heterogeneous networks, a typical cell layout to enhance frequency utilization is to incorporate picocells and femtocells in a macrocell. However, the co-channel interference between the marcocell and picocell/femtocell is an important issue when the same frequency band is used between these systems. We have already clarified how the interference from the femto(macro) cell affects on the macro(femto) cell. In this paper, we evaluate the interference rejection characteristics by an adaptive array with user equipment (UE). The characteristics are evaluated based on the K-factor used in the Nakagami-Race Fading model and the spatial correlation that is obtained in an actual outdoor environment. It is shown that a two-element adaptive array at the macro UE (M-UE) can sufficiently reduce the interference from the femto base station (F-BS) to the M-UE even if the number of total signals exceeds the degrees of freedom of the array.