1-1hit |
Pang-Cheng YU Hun-Hsien CHANG Jiin-Chuan WU
A new output driver design called modified asymmetrical slew rate (MASR) output driver was proposed to reduce the simultaneous switching noise without sacrificing switching speed, for high speed and heavy loading applications. The driving capability of the output driver was designed to sink/source 64 mA current @ VOL/VOH = 0.4 V/4.6 V, with 66 pF and 50 Ω loading. When four drivers switch simultaneously, the ground bounce was design to be less than 0.8 V. The performances of the conventional, controlled slew rate (CSR), and MASR output drivers were analyzed by computer simulation. These three types of drivers were implemented with a 0.8 µm CMOS process. The measured ground bounce of the conventional driver is 1.22 V, while the ground bounce of the MASR driver is reduced to 0.72 V. The propagation delays of the conventional and MASR drivers are the same. The performance of the MASR driver is better than that of the CSR driver in all aspects.