A new output driver design called modified asymmetrical slew rate (MASR) output driver was proposed to reduce the simultaneous switching noise without sacrificing switching speed, for high speed and heavy loading applications. The driving capability of the output driver was designed to sink/source 64 mA current @ VOL/VOH = 0.4 V/4.6 V, with 66 pF and 50 Ω loading. When four drivers switch simultaneously, the ground bounce was design to be less than 0.8 V. The performances of the conventional, controlled slew rate (CSR), and MASR output drivers were analyzed by computer simulation. These three types of drivers were implemented with a 0.8 µm CMOS process. The measured ground bounce of the conventional driver is 1.22 V, while the ground bounce of the MASR driver is reduced to 0.72 V. The propagation delays of the conventional and MASR drivers are the same. The performance of the MASR driver is better than that of the CSR driver in all aspects.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Pang-Cheng YU, Hun-Hsien CHANG, Jiin-Chuan WU, "A 256 mA 0.72 V Ground Bounce Output Driver" in IEICE TRANSACTIONS on Electronics,
vol. E83-C, no. 5, pp. 767-776, May 2000, doi: .
Abstract: A new output driver design called modified asymmetrical slew rate (MASR) output driver was proposed to reduce the simultaneous switching noise without sacrificing switching speed, for high speed and heavy loading applications. The driving capability of the output driver was designed to sink/source 64 mA current @ VOL/VOH = 0.4 V/4.6 V, with 66 pF and 50 Ω loading. When four drivers switch simultaneously, the ground bounce was design to be less than 0.8 V. The performances of the conventional, controlled slew rate (CSR), and MASR output drivers were analyzed by computer simulation. These three types of drivers were implemented with a 0.8 µm CMOS process. The measured ground bounce of the conventional driver is 1.22 V, while the ground bounce of the MASR driver is reduced to 0.72 V. The propagation delays of the conventional and MASR drivers are the same. The performance of the MASR driver is better than that of the CSR driver in all aspects.
URL: https://global.ieice.org/en_transactions/electronics/10.1587/e83-c_5_767/_p
Copy
@ARTICLE{e83-c_5_767,
author={Pang-Cheng YU, Hun-Hsien CHANG, Jiin-Chuan WU, },
journal={IEICE TRANSACTIONS on Electronics},
title={A 256 mA 0.72 V Ground Bounce Output Driver},
year={2000},
volume={E83-C},
number={5},
pages={767-776},
abstract={A new output driver design called modified asymmetrical slew rate (MASR) output driver was proposed to reduce the simultaneous switching noise without sacrificing switching speed, for high speed and heavy loading applications. The driving capability of the output driver was designed to sink/source 64 mA current @ VOL/VOH = 0.4 V/4.6 V, with 66 pF and 50 Ω loading. When four drivers switch simultaneously, the ground bounce was design to be less than 0.8 V. The performances of the conventional, controlled slew rate (CSR), and MASR output drivers were analyzed by computer simulation. These three types of drivers were implemented with a 0.8 µm CMOS process. The measured ground bounce of the conventional driver is 1.22 V, while the ground bounce of the MASR driver is reduced to 0.72 V. The propagation delays of the conventional and MASR drivers are the same. The performance of the MASR driver is better than that of the CSR driver in all aspects.},
keywords={},
doi={},
ISSN={},
month={May},}
Copy
TY - JOUR
TI - A 256 mA 0.72 V Ground Bounce Output Driver
T2 - IEICE TRANSACTIONS on Electronics
SP - 767
EP - 776
AU - Pang-Cheng YU
AU - Hun-Hsien CHANG
AU - Jiin-Chuan WU
PY - 2000
DO -
JO - IEICE TRANSACTIONS on Electronics
SN -
VL - E83-C
IS - 5
JA - IEICE TRANSACTIONS on Electronics
Y1 - May 2000
AB - A new output driver design called modified asymmetrical slew rate (MASR) output driver was proposed to reduce the simultaneous switching noise without sacrificing switching speed, for high speed and heavy loading applications. The driving capability of the output driver was designed to sink/source 64 mA current @ VOL/VOH = 0.4 V/4.6 V, with 66 pF and 50 Ω loading. When four drivers switch simultaneously, the ground bounce was design to be less than 0.8 V. The performances of the conventional, controlled slew rate (CSR), and MASR output drivers were analyzed by computer simulation. These three types of drivers were implemented with a 0.8 µm CMOS process. The measured ground bounce of the conventional driver is 1.22 V, while the ground bounce of the MASR driver is reduced to 0.72 V. The propagation delays of the conventional and MASR drivers are the same. The performance of the MASR driver is better than that of the CSR driver in all aspects.
ER -