The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] MIC passive elements(3hit)

1-3hit
  • Comparative Study of Radiation from Various Microstrip-Type MIC Elements Based on the FDTD Method and the Radiation Mode Theory

    Nagayoshi MORITA  Katsuhito OHNO  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E88-C No:8
      Page(s):
    1779-1784

    Radiation characteristics of various microstrip MIC passive elements are investigated in detail on the basis of accurate numerical analysis. For this purpose, the FD-TD method combined with the radiation mode theory is used. Summarized results are presented mainly from the viewpoint of making clear how radiation characteristics differ depending upon typical features of element structures and operating frequencies. Particularly important features of this paper are that not only radiation into the space region but also that in the substrate region is studied in detail for the first time. Suggestive remarks are given on positioning of active devices in MIC for avoiding interference from nearby elements.

  • Analysis Method and Simulation Tool for Multilayer MMIC Elements

    Nagayoshi MORITA  Katsuhito OHNO  Hiroyuki FUKUSHIMA  

     
    PAPER

      Vol:
    E86-C No:8
      Page(s):
    1480-1485

    An analysis method based on the FD-TD and radiation mode expansion methods and its simulation tool are developed for calculating circuit characteristics and parameter values of passive MMIC (Monolithic Microwave Integrated Circuits) elements having multilayer structure. For straight multilayer microstrip lines and coplanar waveguides, it is possible to calculate characteristic impedance, effective permittivity, transverse field distribution of guided modes, etc. For various multilayer microstrip and coplanar waveguide elements, it is possible to calculate scattering parameters, radiated power, radiation patterns, etc. As an example of application of the present technique, effects of inclusion of lower permittivity layer in the substrate on transmission and radiation characteristics are investigated for right-angled microstrip bends.

  • Development of an Analysis Method and Its Simulation Tool for Microstrip-Type Microwave Integrated Circuit Elements

    Nagayoshi MORITA  Yutaka YOSHIOKA  Norihiro HOSOYA  

     
    PAPER-Electromagnetics Simulation Techniques

      Vol:
    E84-C No:7
      Page(s):
    898-904

    A simulation tool for analyzing circuit characteristics of microstrip-type MIC (Microwave Integrated Circuit) passive elements is presented. The major part of this tool is the electromagnetic wave analysis based on the FD-TD (Finite-Difference Time-Domain) method combined with the mode expansion theory. Although the element structures which can be treated in this tool are limited to only less than ten fundamental structures in the present stage, its extension to the more versatile tool applicable to other various element types is rather straightforward and simple in principle. When using this tool, we first choose the element configuration to be calculated and give, on a panel, necessary parameter values related to calculation range and mesh division scheme. Given these values, the first step calculation starts to obtain the characteristic impedance, cross sectional field distribution of the propagating mode, etc. of the basic microstrip line. Field distributions around the element configulation are calculated next with the mode field oscillation being given. Through this process the field distributions on a closed rectangular parallelepiped surface enclosing the element configuration are stored in files, from which S parameter and radiated fields are calculated by invoking the reaction integral with propagation modes and radiation modes, respectively. The results obtained in these three steps can be expressed, at our discretion, as line drawings or two-dimensional density plots.