The search functionality is under construction.

Keyword Search Result

[Keyword] MIMO Sensor(3hit)

1-3hit
  • Channel Estimation Method Using Arbitrary Amplitude and Phase Modulation Schemes for MIMO Sensor

    Tsubasa TASHIRO  Kentaro NISHIMORI  Tsutomu MITSUI  Nobuyasu TAKEMURA  

     
    PAPER

      Vol:
    E97-B No:10
      Page(s):
    2102-2109

    We have proposed an intruder detection method by using multiple-input multiple-output (MIMO) channels. Although the channel capacity for MIMO transmission is severely degraded in time-variant channels, we can take advantage of this feature in MIMO sensor applications. For MIMO sensors, the accurate estimation of channel state information (CSI) is essential. Moreover, the transceiver should be simplified from the viewpoint of saving power. Narrowband signals such as minimum shift keying (MSK) and offset quaternary phase shift keying signals are effective and are used in sensor network systems. However, because the timing and carrier offsets between the transmitter and receiver are relatively large compared to the symbol rate, accurate CSI estimation is impossible given the severe constraints imposed by the timing and carrier offsets. To solve this issue, a signal synchronization method for the CSI estimation using a narrowband MSK signal has been proposed. In this paper, we propose a new CSI estimation method for arbitrary amplitude and phase modulation schemes for the MIMO sensor. The key point of the proposed method is that control signals (unique words) are mapped so as not to pass through the origin of the complex I/Q plane. The estimation accuracy of the proposed method is evaluated via a computer simulation. Moreover, the basic performance by the proposed CSI estimation method is verified when considering intruder detection by MIMO sensor.

  • Compact Antenna Arrangement for MIMO Sensor in Indoor Environment

    Naoki HONMA  Kentaro NISHIMORI  Hiroaki SATO  Yoshitaka TSUNEKAWA  

     
    PAPER-Adaptive Array Antennas/MIMO

      Vol:
    E96-B No:10
      Page(s):
    2491-2498

    This paper proposes the antenna arrangement for 2×2 MIMO (Multiple-Input Multiple-Output) sensor and evaluates the detection performance based on raytracing simulation. In this arrangement, the transmitting and receiving antennas are placed closely. Two types of the arrangement are considered. In the first method, all of the transmitting and receiving antennas are located closely. In the second method, two sets of the antennas are placed separately, and each set has one transmitting and one receiving antennas. The numerical analysis of the indoor propagation based on the raytracing method is carried out. The path distribution and intrusion detection performance with the various antenna arrangements are evaluated for the human positions all over the room. The numerical analysis results show that the proposed antenna arrangements achieve the compact configuration of the sensor antenna system as well as high detection performance.

  • Intruder Detection Performance of SIMO and MIMO Sensors with Same Number of Channel Responses

    Keita USHIKI  Kentaro NISHIMORI  Naoki HONMA  Hideo MAKINO  

     
    PAPER-Adaptive Array Antennas/MIMO

      Vol:
    E96-B No:10
      Page(s):
    2499-2505

    Intruder detection method by utilizing a time variation of Multiple Input Multiple Output (MIMO) channel (MIMO Sensor) has been proposed. Although the channel capacity on the MIMO transmission is severely degraded in time variant channels, we can take advantage of this feature in MIMO Sensor applications. We have already demonstrated the effectiveness of 2×2 MIMO sensor using 2.4GHz band at a small room (Size is 50m2). In this paper, we compare the detection probability of SIMO/MIMO sensors when the number of channel responses are same between SIMO/MIMO sensors: The numbers of transmit and receive antennas are 1 and 4 (SIMO), it is clarified that 2 and 2 (MIMO). The measurement was carried out at the room with the size of 140m2. From the measured results, 2×2 MIMO sensor obtains the same or higher detection probability compared to 4×1 SIMO sensor regardless of the measured location.