1-3hit |
Phanumas KHUMSAT Apisak WORAPISHET Wanlop SURAKAMPONTORN
A double-capacitor phase error compensation configuration is proposed for Gm-C and MOSFET-C filters. The use of two capacitors enables the effective compensation capacitance to track with the tuning resistance, thereby making it more effective over a wider frequency tuning range as compared to the conventional single-capacitor configuration. Simulations of 5th-order Chebyshev filters in a 0.18 µm CMOS process with more than one octave tuning range were carried out to demonstrate the viability of the proposed double-capacitor configuration for both Gm-C and MOSFET-C filters.
Phanumas KHUMSAT Apisak WORAPISHET
A compact OTA suitable for low-voltage active-RC and MOSFET-C filters is presented. The input stage of the OTA utilises the NMOS pseudo-differential amplifier with PMOS active load. The output stage relies upon the dual-mode feed-forward class-AB technique (based on an inverter-type transconductor) with common-mode rejection capability that incurs no penalty on transconductance/bias-current efficiency. Simulation results of a 0.5-V 100-kHz 5th-order Chebyshev filter based on the proposed OTA in a 0.18 µm CMOS process indicate SNR and SFDR of 68 dB and 63 dB (at 50 kHz+55 kHz) respectively. The filter consumes total power consumption of 60 µW.
Phanumas KHUMSAT Apisak WORAPISHET
A compact OTA suitable for low-voltage active-RC and MOSFET-C filters is presented. The input stage of the OTA utilises the resistive tail-biased differential amplifier and the output stage relies upon the feed-forward class AB technique with common-mode rejection capability that incurs no penalty on transconductance/bias-current efficiency. Analysis on the achievable peak voltage swing of the OTA when employed in filters is given. Simulation results of a 0.5-V 100-kHz elliptic 5th-order filter based on the OTA's in a 2-V 0.18 µm CMOS process indicate the differential peak voltage as large as 0.42 Vp (84% of the supply voltage) at 1% THD with the SFDR of 60 dB and the total power consumption of 50 µW.