The search functionality is under construction.

Keyword Search Result

[Keyword] MTD(4hit)

1-4hit
  • An SDN-Based Moving Target Defense as a Countermeasure to Prevent Network Scans Open Access

    Shoya CHIBA  Luis GUILLEN  Satoru IZUMI  Toru ABE  Takuo SUGANUMA  

     
    PAPER

      Pubricized:
    2022/05/27
      Vol:
    E105-B No:11
      Page(s):
    1400-1407

    This paper proposes a Software-Defined Network (SDN)-based Moving Target Defense (MTD) to protect the network from potential scans in a compromised network. As a unique feature, contrary to traditional MTDs, the proposed MTD can work alongside other tools and countermeasures already deployed in the network (e.g., Intrusion Protection and Detection Systems) without affecting its behavior. Through extensive evaluation, we showed the effectiveness of the proposed mechanism compared to existing solutions in preventing scans of different rates without affecting the network and controller performance.

  • Stochastic Resonance of Signal Detection in Mono-Threshold System Using Additive and Multiplicative Noises

    Jian LIU  Youguo WANG  Qiqing ZHAI  

     
    PAPER-Noise and Vibration

      Vol:
    E99-A No:1
      Page(s):
    323-329

    The phenomenon of stochastic resonance (SR) in a mono-threshold-system-based detector (MTD) with additive background noise and multiplicative external noise is investigated. On the basis of maximum a posteriori probability (MAP) criterion, we deal with the binary signal transmission in four scenarios. The performance of the MTD is characterized by the probability of error detection, and the effects of system threshold and noise intensity on detectability are discussed in this paper. Similar to prior studies that focus on additive noises, along with increases in noise intensity, we also observe a non-monotone phenomenon in the multiplicative ways. However, unlike the case with the additive noise, optimal multiplicative noises all tend toward infinity for fixed additive noise intensities. The results of our model are potentially useful for the design of a sensor network and can help one to understand the biological mechanism of synaptic transmission.

  • Electrical Characterization of Hole Transport Materials Using In-situ Field Effect Measurement

    Masaaki IIZUKA  Masakazu NAKAMURA  Kazuhiro KUDO  Kuniaki TANAKA  

     
    PAPER-Fabrication and Characterization of Thin Films

      Vol:
    E85-C No:6
      Page(s):
    1311-1316

    We investigated the electrical properties of hole transport materials such as TPD, α-NPD and m-MTDATA using in-situ field effect measurement. TPD, α-NPD and m-MTDATA films showed p-type semiconducting properties, and their electrical parameters such as conductivity, carrier mobility and carrier concentration were obtained. We also examined the effect of the substrate temperature during vacuum deposition and the thermal treatment after deposition, on the electrical parameters of the films. Experimental results showed that conductivity and carrier mobility decreased as the substrate temperature increased over the glass transition temperature. These decreases in conductivity and carrier mobility as a result of thermal treatment appear to be strongly related to the degradation mechanism of organic electroluminescent devices.

  • A New Structure for Radar Sliding MTD

    Yongquan ZHANG  Xiqin WANG  Yingning PENG  

     
    LETTER-Sensing

      Vol:
    E84-B No:2
      Page(s):
    349-350

    A modified moving DFT algorithm and a new SMTD structure are proposed in this paper. The new SMTD structure adopts both batch-mode signal channel estimating and the modified moving DFT algorithm, which leads to dramatic decline of the computational load.