The search functionality is under construction.

Keyword Search Result

[Keyword] Nyquist pulse(4hit)

1-4hit
  • Demodulation Performance Comparison of High-Speed Coherent Nyquist Pulse Signal with Analog and Digital Demultiplexing Schemes

    Masato YOSHIDA  Kosuke KIMURA  Toshihiko HIROOKA  Keisuke KASAI  Masataka NAKAZAWA  

     
    PAPER

      Pubricized:
    2023/05/11
      Vol:
    E106-B No:11
      Page(s):
    1059-1064

    We compare the demodulation performance of an analog OTDM demultiplexing scheme and digitized OTDM demultiplexing with an ultrahigh-speed digital signal processor in a single-channel OTDM coherent Nyquist pulse transmission. We evaluated the demodulation performance for 40, 80, and 160Gbaud OTDM signals with a baseline rate of 10Gbaud. As a result, we clarified that the analog scheme performs significantly better since the bandwidth for handling the demultiplexed signal is as narrow as 10GHz regardless of the symbol rate. This enables us to use a low-speed A/D converter (ADC) with a large effective number of bits (ENOB). On the other hand, in the digital scheme, the higher the symbol rate becomes, the more bandwidth the receiver requires. Therefore, it is necessary to use an ultrahigh-speed ADC with a low ENOB for a 160Gbaud signal. We measured the ENOB of the ultrahigh-speed ADC used in the digital scheme and showed that the measured ENOB was approximately 1.5 bits lower than that of the low-speed ADC used in the analog scheme. This 1.5-bit decrease causes a large degradation in the demodulation performance obtained with the digital demultiplexing scheme.

  • Experimental and Numerical Analysis of Ultrahigh-Speed Coherent Nyquist Pulse Transmission with Low-Nonlinearity Dispersion Compensator

    Kosuke KIMURA  Masato YOSHIDA  Keisuke KASAI  Toshihiko HIROOKA  Masataka NAKAZAWA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2022/03/22
      Vol:
    E105-B No:9
      Page(s):
    1014-1022

    In this paper, we report an experimental and numerical analysis of ultrahigh-speed coherent Nyquist pulse transmission. First, we describe a low-nonlinearity dispersion compensator for ultrahigh-speed coherent Nyquist pulse transmission; it is composed of a chirped fiber Bragg grating (CFBG) and a liquid crystal on silicon (LCoS) device. By adopting CFBG instead of inverse dispersion fiber, the nonlinearity in a 160km transmission line was more than halved. Furthermore, by eliminating the group delay fluctuation of the CFBG with an LCoS device, the residual group delay was reduced to as low as 1.42ps over an 11nm bandwidth. Then, by using the transmission line with the newly constructed low-nonlinearity dispersion compensator, we succeeded in improving the BER performance of single-channel 15.3Tbit/s-160km transmission by one-third compared with that of a conventional dispersion-managed transmission line and obtained a spectral efficiency of 8.7bit/s/Hz. Furthermore, we numerically analyzed the BER performance of its Nyquist pulse transmission. The numerical results showed that the nonlinear impairment in the transmission line is the main factor limiting the transmission performance in a coherent Nyquist pulse transmission, which becomes more significant at higher baud rates.

  • ISI-Free Linear Combination Pulses with Better Performance

    Cesar AZURDIA-MEZA  Kyujin LEE  Kyesan LEE  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E96-B No:2
      Page(s):
    635-638

    In this letter we proposed the linear combination of two ISI-free pulses with different decay rates in order to obtain a new Nyquist pulse. The proposed pulse contains a new design parameter β, giving an additional degree of freedom to minimize the bit error probability performance in the presence of symbol-timing errors, for a given roll-off factor α. Several practical tools are implemented for evaluating the performance of the proposed filter. The novel pulse is evaluated in terms of the bit error probability performance in the presence of symbol-timing errors. Eye diagrams are presented to visually assess the vulnerability of the transmission system to ISI, and the maximum distortion is estimated as a quantitative measure of performance.

  • Peak-to-Average Power Ratio (PAPR) Reduction by Pulse Shaping Using the K-Exponential Filter

    Yi-De WEI  Yung-Fang CHEN  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E93-B No:11
      Page(s):
    3180-3183

    A K-exponential filter is derived and utilized for pulse shaping to reduce peak to average power ratio (PAPR) without intersymbol interference (ISI). While keeping the same bandwidth, the frequency responses of the filters vary with different values of the parameter k. The minimum PAPR is associated with a value of the parameter k when the roll-off factor α is specified. Simulations show that the PAPR can be reduced compared with the raised cosine (RC) filter in various systems. The derived pulse shaping filters also provide better performance in PAPR reduction compared with the existing filters.