The search functionality is under construction.

Keyword Search Result

[Keyword] RTT(8hit)

1-8hit
  • Performance Evaluation of Wi-Fi RTT Lateration without Pre-Constructing a Database

    Tetsuya MANABE  Kazuya SABA  

     
    PAPER

      Pubricized:
    2022/12/02
      Vol:
    E106-A No:5
      Page(s):
    765-774

    This paper proposes an algorithm for estimating the location of wireless access points (APs) in indoor environments to realize smartphone positioning based on Wi-Fi without pre-constructing a database. The proposed method is designed to overcome the main problem of existing positioning methods requiring the advance construction of a database with coordinates or precise AP location measurements. The proposed algorithm constructs a local coordinate system with the first four APs that are activated in turn, and estimates the AP installation location using Wi-Fi round-trip time (RTT) lateration and the ranging results between the APs. The effectiveness of the proposed algorithm is confirmed by conducting experiments in a real indoor environment consisting of two rooms of different sizes to evaluate the positioning performance of the algorithm. The experimental results showed the proposed algorithm using Wi-Fi RTT lateration delivers high smartphone positioning performance without a pre-constructed database or precise AP location measurements.

  • A Design Methodology of Wi-Fi RTT Ranging for Lateration

    Tetsuya MANABE  Koichi AIHARA  Naoki KOJIMA  Yusuke HIRAYAMA  Taichi SUZUKI  

     
    PAPER-Intelligent Transport System

      Pubricized:
    2021/06/01
      Vol:
    E104-A No:12
      Page(s):
    1704-1713

    This paper indicates a design methodology of Wi-Fi round-trip time (RTT) ranging for lateration through the performance evaluation experiments. The Wi-Fi RTT-based lateration needs to operate plural access points (APs) at the same time. However, the relationship between the number of APs in operation and ranging performance has not been clarified in the conventional researches. Then, we evaluate the ranging performance of Wi-Fi RTT for lateration focusing on the number of APs and channel-usage conditions. As the results, we confirm that the ranging result acquisition rates decreases caused by increasing the number of APs simultaneously operated and/or increasing the channel-usage rates. In addition, based on positioning performance comparison between the Wi-Fi RTT-based lateration and the Wi-Fi fingerprint method, we clarify the points of notice that positioning by Wi-Fi RTT-based lateration differs from the conventional radio-intensity-based positioning. Consequently, we show a design methodology of Wi-Fi RTT ranging for lateration as the following three points: the important indicators for evaluation, the severeness of the channel selection, and the number of APs for using. The design methodology will help to realize the high-quality location-based services.

  • RTT Estimation with Sampled Flow Data

    Qi SU  Jian GONG  Xiaoyan HU  

     
    PAPER-Network Management/Operation

      Vol:
    E98-B No:9
      Page(s):
    1848-1857

    Round-trip time (RTT) is an important performance metric. Traditional RTT estimation methods usually depend on the cooperation of other networks and particular active or passive measurement platforms, whose global deployments are costly and difficult. Thus a new RTT estimation algorithm, ME algorithm, is introduced. It can estimate the RTT of two hosts communicating through border routers by using TCP CUBIC bulk flow data from those routhers without the use of extra facilities, which makes the RTT estimation in large-scale high-speed networks more effective. In addition, a simpler and more accurate algorithm — AE algorithm — is presented and used when the link has large bandwidth and low packet loss rate. The two proposed algorithms suit sampled flow data because only duration and total packet number of a TCP CUBIC bulk flow are inputs to their calculations. Experimental results show that both algorithms work excellently in real situations. Moreover, they have the potential to be adapted to other TCP versions with slight modification as their basic idea is independent of the TCP congestion control mechanism.

  • A New Available Bandwidth Estimation Method Using RTT for a Bottleneck Link

    Masaharu IMAI  Yoshio SUGIZAKI  Koichi ASATANI  

     
    PAPER-Network

      Vol:
    E97-B No:4
      Page(s):
    712-720

    The Internet real-time applications are growing rapidly, and available bandwidth estimation is required. Available bandwidth estimation methods by end host have been studied e.g. Pathload and pathChirp. These methods parameterize probe packet volume and observe the delay variation to estimate available bandwidth. In these methods, the probe packets impose heavy overhead loads on the network. In this paper, we propose a new available bandwidth estimation method based on the frequency of minimum RTT of probe packets in multi hop links. This method estimates bandwidth utilization and available bandwidth of a bottleneck link without significantly increasing network overhead. Estimation accuracies are evaluated for available bandwidth by implementing the proposed method. The proposed method shows better performance than pathChirp or Pathload, requiring fewer probe packets and less estimation time simultaneously.

  • A New TCP Congestion Control Supporting RTT-Fairness

    Kazumine OGURA  Yohei NEMOTO  Zhou SU  Jiro KATTO  

     
    PAPER

      Vol:
    E95-D No:2
      Page(s):
    523-531

    This paper focuses on RTT-fairness of multiple TCP flows over the Internet, and proposes a new TCP congestion control named “HRF (Hybrid RTT-Fair)-TCP”. Today, it is a serious problem that the flows having smaller RTT utilize more bandwidth than others when multiple flows having different RTT values compete in the same network. This means that a user with longer RTT may not be able to obtain sufficient bandwidth by the current methods. This RTT fairness issue has been discussed in many TCP papers. An example is CR (Constant Rate) algorithm, which achieves RTT-fairness by multiplying the square of RTT value in its window increment phase against TCP-Reno. However, the method halves its windows size same as TCP-Reno when a packet loss is detected. This makes worse its efficiency in certain network cases. On the other hand, recent proposed TCP versions essentially require throughput efficiency and TCP-friendliness with TCP-Reno. Therefore, we try to keep these advantages in our TCP design in addition to RTT-fairness. In this paper, we make intuitive analytical models in which we separate resource utilization processes into two cases: utilization of bottleneck link capacity and that of buffer space at the bottleneck link router. These models take into account three characteristic algorithms (Reno, Constant Rate, Constant Increase) in window increment phase where a sender receives an acknowledgement successfully. Their validity is proved by both simulations and implementations. From these analyses, we propose HRF-TCP which switches two modes according to observed RTT values and achieves RTT fairness. Experiments are carried out to validate the proposed method. Finally, HRF-TCP outperforms conventional methods in RTT-fairness, efficiency and friendliness with TCP-Reno.

  • Discovery Method for Ethernet Optical Switched Access Network

    Hiromi UEDA  Toshinori TSUBOI  Hiroyuki KASAI  

     
    PAPER

      Vol:
    E93-B No:2
      Page(s):
    263-271

    An Optical Line Terminal (OLT) needs to find and register newly connected Optical Network Units (ONUs) in the proposed Ethernet Optical Switched Access Network (E-OSAN) as well as the Ethernet Passive Optical Network (E-PON). In this discovery process, OLT measures round trip time (RTT) between OLT and each ONU and then assigns a Logical Link Identification (LLID) to each ONU. For E-OSAN, the conventional discovery method takes up to N discovery periods for OLT to register all ONUs, where N denotes the number of switch ports of the Optical Switching Module (OSM). This paper proposes an efficient method that completes discovery in just one period. This paper also evaluates the maximum ranging completion time of the proposed discovery method in a comparison with E-PON.

  • Inferring Network Impact Factors: Applying Mixed Distribution to Measured RTTs

    Yasuhiro SATO  Shingo ATA  Ikuo OKA  Chikato FUJIWARA  

     
    PAPER-Network

      Vol:
    E92-B No:4
      Page(s):
    1233-1243

    The end-to-end round trip time (RTT) is one of the most important communication characteristics for Internet applications. From the viewpoint of network operators, RTT may also become one of the important metrics to understand the network conditions. Given this background, we should know how a factor such as a network incident influences RTTs. It is obvious that two or more factors may interfere in the observed delay characteristics, because packet transmission delays in the Internet are strongly dependent on the time-variant condition of the network. In this paper, we propose a modeling method by using mixed distribution which enables us to express delay characteristic more accurately where two or more factors exist together. And, we also propose an inferring method of network behavior by decomposition of the mixed distribution based on modeling results. Furthermore, in experiments we investigate the influence caused by each network impact factor independently. Our proposed method can presume the events that occur in a network from the measurements of RTTs by using the decomposition of the mixed distribution.

  • A Simple Asynchronous UWB Position Location Algorithm Based on Single Round-Trip Transmission

    Suckchel YANG  Dongwoo KANG  Young NAMGOONG  Yoan SHIN  

     
    LETTER-Spread Spectrum Technologies and Applications

      Vol:
    E91-A No:1
      Page(s):
    430-432

    We propose a simple asynchronous UWB (Ultra Wide Band) position location algorithm with low complexity, power consumption and processing delay. In the proposed algorithm, only a single RTTX (Round-Trip Transmission) of UWB pulses is utilized based on the ToA (Time of Arrival) principle. Hence, the proposed algorithm decreases power consumption and processing delay as compared to the basic ToA based on triple RTTXs. Moreover, unlike the TDoA (Time Difference of Arrival) algorithm, the proposed algorithm can perform the position location with low complexity since it does not require strict synchronization between multiple beacons. Simulation results using IEEE 802.15.4a UWB channel models reveal that the proposed algorithm achieves closely comparable position location performance of the basic ToA and TDoA algorithms.