The search functionality is under construction.

Keyword Search Result

[Keyword] TCP Reno(2hit)

1-2hit
  • Enhanced TCP Congestion Control with Higher Utilization in Under-Buffered Links

    Dowon HYUN  Ju Wook JANG  

     
    LETTER-Network

      Vol:
    E95-B No:4
      Page(s):
    1427-1430

    TCP Reno is not fully utilized in under-buffered links. We propose a new TCP congestion control algorithm that can utilize the link almost up to 100% except the first congestion avoidance cycle. Our scheme estimates the minimum congestion window size for full link utilization in every congestion avoidance cycle and sends extra packets without touching TCP Reno congestion control. It has the same RTT fairness and the same saw-tooth wave as TCP Reno does. Our scheme does not affect competing TCP Reno flows since it uses only unused link capacity. We provide a simple mathematical modeling as well as ns-2 simulation results which show that the link utilization is improved by up to 19.88% for k=1/8 against TCP Reno when the buffer is k times the optimal buffer size. We claim that our scheme is useful for transmitting large amount of data in under-buffered links.

  • Performance Analysis and Improvement of HighSpeed TCP with TailDrop/RED Routers

    Zongsheng ZHANG  Go HASEGAWA  Masayuki MURATA  

     
    PAPER-Internet

      Vol:
    E88-B No:6
      Page(s):
    2495-2507

    Continuous and explosive growth of the Internet has shown that current TCP mechanisms can obstruct efficient use of high-speed, long-delay networks. To address this problem we propose an enhanced transport-layer protocol called gHSTCP, based on HighSpeed TCP proposed by Sally Floyd. It uses two modes in the congestion avoidance phase based on the changing trend of RTT. Simulation results show gHSTCP can significantly improve performance in mixed environments, in terms of throughput and fairness against the traditional TCP Reno flows. However, the performance improvement is limited due to the nature of TailDrop router, and the RED/ARED routers can not alleviate the problem completely. Therefore, we present a modified version of Adaptive RED, called gARED, directed at the problem of simultaneous packet drops by multiple flows in high speed networks. gARED can eliminate weaknesses found in Adaptive RED by monitoring the trend in variation of the average queue length of the router buffer. Our approach, combining gARED and gHSTCP, is quite effective and fair to competing traffic than Adaptive RED with HighSpeed TCP.