The search functionality is under construction.

Author Search Result

[Author] Masayuki MURATA(115hit)

1-20hit(115hit)

  • Separating Predictable and Unpredictable Flows via Dynamic Flow Mining for Effective Traffic Engineering Open Access

    Yousuke TAKAHASHI  Keisuke ISHIBASHI  Masayuki TSUJINO  Noriaki KAMIYAMA  Kohei SHIOMOTO  Tatsuya OTOSHI  Yuichi OHSITA  Masayuki MURATA  

     
    PAPER-Internet

      Pubricized:
    2017/08/07
      Vol:
    E101-B No:2
      Page(s):
    538-547

    To efficiently use network resources, internet service providers need to conduct traffic engineering that dynamically controls traffic routes to accommodate traffic change with limited network resources. The performance of traffic engineering (TE) depends on the accuracy of traffic prediction. However, the size of traffic change has been drastically increasing in recent years due to the growth in various types of network services, which has made traffic prediction difficult. Our approach to tackle this issue is to separate traffic into predictable and unpredictable parts and to apply different control policies. However, there are two challenges to achieving this: dynamically separating traffic according to predictability and dynamically controlling routes for each separated traffic part. In this paper, we propose a macroflow-based TE scheme that uses different routing policies in accordance with traffic predictability. We also propose a traffic-separation algorithm based on real-time traffic analysis and a framework for controlling separated traffic with software-defined networking technology, particularly OpenFlow. An evaluation of actual traffic measured in an Internet2 network shows that compared with current TE schemes the proposed scheme can reduce the maximum link load by 34% (at the most congested time) and the average link load by an average of 11%.

  • A Study on Adaptive Scheduling Priority Control for Layered Cell Configuration

    Atsushi NAGATE  Teruya FUJII  Masayuki MURATA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2016/09/15
      Vol:
    E100-B No:2
      Page(s):
    372-379

    The layered cell configuration, in which a large number of small cells are set in a macro-cell coverage area, is attracting much attention recently as a promising approach to handle the rapidly increasing mobile data traffic. In this configuration, cells of various sizes, from macro to small, are placed in various locations, so that the variation in the number and the distribution of the users among cells becomes much wider than in conventional macro-cell homogeneous networks. Therefore, even in the layered cell configuration, the users in the cell with many users and low received signal quality may experience low throughput especially at cell edge. This is because such users experience both low spectral efficiency and few radio resources. In order to resolve this issue, a lot of techniques have been proposed such as load balancing and cooperative multi-point transmission. In this paper, we focus on scheduling priority control as a simple solution that can also be used in combination with load balancing and coordinated multi-point transmission. We propose an adaptive scheduling priority control scheme based on the congestion and user distribution of each cell and clarify the effect of the proposed method by computer simulations.

  • FOREWORD Open Access

    Masayuki MURATA  

     
    FOREWORD

      Vol:
    E95-B No:5
      Page(s):
    1487-1487
  • An Approximate Analysis of a Prioritized Token Passing Method in Ring-Shaped Local Area Networks

    Takeshi NISHIDA  Masayuki MURATA  Hideo MIYAHARA  Kensuke TAKASHIMA  

     
    PAPER-Communication Networks

      Vol:
    E69-E No:1
      Page(s):
    29-39

    We present a new access protocol with priority functions in a ring-shaped local area network utilizing the token passing method. This protocol provides an asynchronous TDMA scheme to the terminals with the low class traffic, and the terminals with the high class traffic can transmit their messages between the consecutive transmissions of low class traffic. The protocol is shown to be effective for the environment where multifarious traffic is accommodated in the network. It gives the higher priority in transmission to the traffic which requires the real time transmission, while the lower priority is given to the one which may not require so strict real time transmission. We provide an approximate analytical method for obtaining the average message delay in our protocol. The performance of our protocol is compared with that of existing access protocol for two example network models, one is the network with balanced load and the other is not. As a result, it is observed in both the example networks that the characteristics of transmission delay for the messages with higher priority is much improved compared with other existing method without introducing much service degradation for lower priority traffic.

  • Analysis of Blacklist Update Frequency for Countering Malware Attacks on Websites

    Takeshi YAGI  Junichi MURAYAMA  Takeo HARIU  Sho TSUGAWA  Hiroyuki OHSAKI  Masayuki MURATA  

     
    PAPER-Internet

      Vol:
    E97-B No:1
      Page(s):
    76-86

    We proposes a method for determining the frequency for monitoring the activities of a malware download site used for malware attacks on websites. In recent years, there has been an increase in attacks exploiting vulnerabilities in web applications for infecting websites with malware and maliciously using those websites as attack platforms. One scheme for countering such attacks is to blacklist malware download sites and filter out access to them from user websites. However, a malware download site is often constructed through the use of an ordinary website that has been maliciously manipulated by an attacker. Once the malware has been deleted from the malware download site, this scheme must be able to unblacklist that site to prevent normal user websites from being falsely detected as malware download sites. However, if a malware download site is frequently monitored for the presence of malware, the attacker may sense this monitoring and relocate that malware on a different site. This means that an attack will not be detected until the newly generated malware download site is discovered. In response to these problems, we clarify the change in attack-detection accuracy caused by attacker behavior. This is done by modeling attacker behavior, specifying a state-transition model with respect to the blacklisting of a malware download site, and analyzing these models with synthetically generated attack patterns and measured attack patterns in an operation network. From this analysis, we derive the optimal monitoring frequency that maximizes the true detection rate while minimizing the false detection rate.

  • Analysis of Network Traffic and Its Application to Design of High-Speed Routers

    Shingo ATA  Masayuki MURATA  Hideo MIYAHARA  

     
    PAPER

      Vol:
    E83-D No:5
      Page(s):
    988-995

    A rapid growth of the Internet and proliferation of new multimedia applications lead to demands of high speed and broadband network technologies. Routers are also necessary to follow up the growth of link bandwidths. From this reason, there have been many researches on high speed routers having switching capabilities. To have an expected effect, however, a control parameters set based on traffic characteristics are necessary. In this paper, we analyze the network traffic using the network traffic monitor and investigate the Internet traffic characteristics through a statistical analysis. We next show the application of our analytical results to parameter settings of high speed switching routers. Simulation results show that our approach makes highly utilized VC space and high performance in packet processing delay. We also show the effect of flow aggregation on MPLS. From our results, the flow aggregation has a great impact on the performance of MPLS.

  • Proxy Caching Mechanisms with Quality Adjustment for Video Streaming Services

    Masahiro SASABE  Yoshiaki TANIGUCHI  Naoki WAKAMIYA  Masayuki MURATA  Hideo MIYAHARA  

     
    PAPER-Proxy Caching

      Vol:
    E86-B No:6
      Page(s):
    1849-1858

    The proxy mechanism widely used in WWW systems offers low-delay data delivery by means of "proxy server." By applying proxy mechanisms to video streaming system, we expect that high-quality and low-delay video distribution can be accomplished without introducing extra load on the system. In addition, it is effective to adapt the quality of cached video data appropriately in the proxy if user requests are diverse due to heterogeneity in terms of the available bandwidth, end-system performance, and user's preferences on the perceived video quality. In this paper, we propose proxy caching mechanisms to accomplish high-quality and low-delay video streaming services. In our proposed system, a video stream is divided into blocks for efficient use of cache buffer. A proxy cache server is assumed to be able to adjust the quality of cached or retrieved video blocks to requests through video filters. We evaluate our proposed mechanisms in terms of the required buffer size, the play-out delay and the video quality through simulation experiments. Furthermore, to verify the practicality of our mechanisms, we implement our proposed mechanisms on a real system and conducted experiments. Through evaluations from several performance aspects, it is shown that our proposed mechanisms can provide users with a low-latency and high-quality video streaming service in a heterogeneous environment.

  • Performance Evaluation and Parameter Tuning of TCP over ABR Service in ATM Networks

    Go HASEGAWA  Hiroyuki OHSAKI  Masayuki MURATA  Hideo MIYAHARA  

     
    PAPER

      Vol:
    E79-B No:5
      Page(s):
    668-683

    Rate-based congestion control is a promising scheme as data transfer service in ATM networks, and has been standardized in the ATM Forum. To migrate the existing upper layer protocols to ATM networks, however, further investigation is necessary. In particular, when ABR service class is applied to TCP (Transmission Control Protocol), duality of congestion control schemes in different protocol layers, i.e., conventional window-based congestion control in the Transport layer and ratebased congestion control in the ATM layer, may have a unexpected influence on performance. As an alternative approach for supporting TCP protocol, EPD (Early Packet Discard) has been recently proposed, which adds the function to the UBR (Unspecified Bit Rate) service. It does not have a "duality problem" since EPD only discards cells selectively to improve packet-level performance. In this paper, we exhibit performance of TCP protocol over ATM networks by using a simulation technique. We first compare rate-based control of ABR service and EPD applied to UBR service, and show that rate-control achieves better fairness and higher throughput in most circumstances. However, rate-based control requires careful tuning of control parameters to obtain its effectiveness and a duality problem leads to unexpected degradation of TCP-level performance. By the rate-based congestion control, temporal congestion at the switch is quickly relieved by the rate down of the source terminals. However, our simulation explores that if the parameter set of the rate-based congestion control is not appropriately used, the congestion is also recognized at TCP due to packet drops and TCP unnecessarily throttles its window size. To avoid this sort of the problem, we develop the appropriate parameter set suitable to TCP on ABR service, and point out that some modification of TCP may be necessary for further performance improvement.

  • Scalable Cache Component in ICN Adaptable to Various Network Traffic Access Patterns

    Atsushi OOKA  Eum SUYONG  Shingo ATA  Masayuki MURATA  

     
    PAPER

      Pubricized:
    2017/07/05
      Vol:
    E101-B No:1
      Page(s):
    35-48

    Information-centric networking (ICN) has received increasing attention from all over the world. The novel aspects of ICN (e.g., the combination of caching, multicasting, and aggregating requests) is based on names that act as addresses for content. The communication with name has the potential to cope with the growing and complicating Internet technology, for example, Internet of Things, cloud computing, and a smart society. To realize ICN, router hardware must implement an innovative cache replacement algorithm that offers performance far superior to a simple policy-based algorithm while still operating with feasible computational and memory overhead. However, most previous studies on cache replacement policies in ICN have proposed policies that are too blunt to achieve significant performance improvement, such as first-in first-out (popularly, FIFO) and random policies, or impractical policies in a resource-restricted environment, such as least recently used (LRU). Thus, we propose CLOCK-Pro Using Switching Hash-tables (CUSH) as the suitable policy for network caching. CUSH can identify and keep popular content worth caching in a network environment. CUSH also employs CLOCK and hash-tables, which are low-overhead data structure, to satisfy the cost requirement. We numerically evaluate our proposed approach, showing that our proposal can achieve cache hits against the traffic traces that simple conventional algorithms hardly cause any hits.

  • Multi-ISP Cooperative Cache Sharing for Saving Inter-ISP Transit Cost in Content Centric Networking

    Kazuhito MATSUDA  Go HASEGAWA  Masayuki MURATA  

     
    PAPER-Internet

      Vol:
    E98-B No:4
      Page(s):
    621-629

    Content-Centric Networking (CCN) has an in-network caching mechanism, which can reduce the traffic volume along the route to the destination host. This traffic volume reduction on the transit link can decrease inter-ISP transit cost. However, the memory space for caching in CCN routers is small relative to content volume. In addition, any initial access to the content requested by a user must use the transit link, even when a nearby CCN router outside the route has the cached content. In this paper, we propose a method of cooperative cache sharing among CCN routers in multiple ISPs. It aims to attain a further reduction in the inter-ISP transit cost by improving the cache hit ratio. In the proposed method, the CCN routers share the memory space for caching of non-overlapping cache content. We evaluate the proposed method by simulation experiments using the IP-level network topology of actual ISP, and show that the inter-ISP transit traffic can be reduced by up to 28% compared with normal caching behavior of CCN.

  • Analysis of a Window-Based Flow Control Mechanism Based on TCP Vegas in Heterogeneous Network Environment

    Keiichi TAKAGAKI  Hiroyuki OHSAKI  Masayuki MURATA  

     
    PAPER

      Vol:
    E85-B No:1
      Page(s):
    89-97

    A feedback-based congestion control mechanism is essential to realize an efficient data transfer service in packed-switched networks. TCP (Transmission Control Protocol) is a feedback-based congestion control mechanism, and has been widely used in the current Internet. An improved version of TCP called TCP Vegas has been proposed and studied in the literature. It can achieve better performance than TCP Reno. In previous studies, performance analysis of a window-based flow control mechanism based on TCP Vegas only for a simple network topology has been performed. In this paper, we extend the analysis to a generic network topology where each connection is allowed to have a different propagation delay and to traverse multiple bottleneck links. We first derive equilibrium values of window sizes of TCP connections and the number of packets waiting in a router's buffer. We also derive throughput of each TCP connection in steady state, and investigate the effect of control parameters of TCP Vegas on fairness among TCP connections. We then present several numerical examples, showing how control parameters of TCP Vegas should be configured for achieving both stability and better transient performance.

  • Dynamics of Feedback-Induced Packet Delay in ISP Router-Level Topologies

    Takahiro HIRAYAMA  Shin'ichi ARAKAWA  Ken-ichi ARAI  Masayuki MURATA  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E95-B No:9
      Page(s):
    2785-2793

    Internet behavior is becoming more complex due to ever-changing networking technologies and applications. Thus, understanding and controlling the complex behavior of the Internet are important for designing future networks. One of the complex behaviors of the Internet is traffic dynamics. Previous studies revealed that flow control in the transport layer affects the traffic dynamics of the Internet. However, it is not clear how the topological structure impacts traffic dynamics. In this paper, we investigate packet delay dynamics and traffic fluctuation in ISP router-level topologies where the degree distribution exhibits a power-law nature, and the nodes interact via end-to-end feedback control functionality. We show the packet delay dynamics of the BA topologies generated by the Barabasi-Albert (BA) model and the ISP router-level topologies. Simulation results show that the end-to-end delay distributions exhibit a heavy tail in the TCP model. Moreover, the number of links with highly fluctuating queue length increases dramatically compared to that in the stop-and-wait model. Even in this case, the high-modularity structures of the ISP topologies reduce the number of highly fluctuating links compared with the BA topologies.

  • Proof Test of Chaos-Based Hierarchical Network Control Using Packet-Level Network Simulation

    Yusuke SAKUMOTO  Chisa TAKANO  Masaki AIDA  Masayuki MURATA  

     
    PAPER-Network

      Vol:
    E99-B No:2
      Page(s):
    402-411

    Computer networks require sophisticated control mechanisms to realize fair resource allocation among users in conjunction with efficient resource usage. To successfully realize fair resource allocation in a network, someone should control the behavior of each user by considering fairness. To provide efficient resource utilization, someone should control the behavior of all users by considering efficiency. To realize both control goals with different granularities at the same time, a hierarchical network control mechanism that combines microscopic control (i.e., fairness control) and macroscopic control (i.e., efficiency control) is required. In previous works, Aida proposed the concept of chaos-based hierarchical network control. Next, as an application of the chaos-based concept, Aida designed a fundamental framework of hierarchical transmission rate control based on the chaos of coupled relaxation oscillators. To clarify the realization of the chaos-based concept, one should specify the chaos-based hierarchical transmission rate control in enough detail to work in an actual network, and confirm that it works as intended. In this study, we implement the chaos-based hierarchical transmission rate control in a popular network simulator, ns-2, and confirm its operation through our experimentation. Results verify that the chaos-based concept can be successfully realized in TCP/IP networks.

  • Circuit Emulation Technique in ATM Networks

    Changhwan OH  Masayuki MURATA  Hideo MIYAHARA  

     
    PAPER-Communication Networks and Service

      Vol:
    E76-B No:6
      Page(s):
    646-657

    A circuit emulation technique in the ATM network becomes necessary to guarantee user requirements similar to QOS grade offered by STM network where small bit error rates and constant delay times are offered. The Head-Of-Line method or other priority control schemes may be considered to provide such service in the ATM network, while it is known to give too inferior quality to non-circuit emulation service traffic. In this paper, we propose a new method called a periodical bandwidth allocation method for the circuit emulation technique. The cells of circuit emulation service traffic are transmitted periodically in our proposal. A periodical interval is determined from both the length of limit delay time of circuit emulation traffic in each switching node and the number of cell arrivals during the limit delay time. To evaluate our method, we consider three kinds of arrival patterns (the best case, the moderate case, and the worst case) for the circuit emulation traffic and a two-state MMPP for modeling the non-circuit emulation traffic. We show performance results in terms of the cell loss probability and the mean delay time in our proposal through analytic and simulation approaches.

  • Scalable and Efficient Ant-Based Routing Algorithm for Ad-Hoc Networks

    Yoshitaka OHTAKI  Naoki WAKAMIYA  Masayuki MURATA  Makoto IMASE  

     
    PAPER-Network

      Vol:
    E89-B No:4
      Page(s):
    1231-1238

    Ants-based routing algorithms have attracted the attention of researchers because they are more robust, reliable, and scalable than other conventional routing algorithms. Since they do not involve extra message exchanges to maintain paths when network topology changes, they are suitable for mobile ad-hoc networks where nodes move dynamically and topology changes frequently. As the number of nodes increases, however, the number of ants (i.e., mobile agents or control messages) also increases, which means that existing algorithms have poor scalability. In this paper, we propose a scalable ant-based routing algorithm that keeps the overhead low while keeping paths short. Our algorithm uses a multistep TTL (Time To Live) scheme, an effective message migration scheme, and an efficient scheme for updating the probability of packet forwarding. Simulation experiments have confirmed that our proposed algorithm can establish shorter paths than the conventional ant-based algorithm with the same signaling overhead.

  • Functional Partitioning for Multi-Layer Survivability in IP over WDM Networks

    Shin'ichi ARAKAWA  Masayuki MURATA  Hideo MIYAHARA  

     
    PAPER

      Vol:
    E83-B No:10
      Page(s):
    2224-2233

    A WDM (Wavelength Division Multiplexing) technology is a new optical technology, providing multiple wavelengths at the rate of 10 Gbps on the fiber. IP (Internet Protocol) over WDM networks where IP packets are directly carried on the WDM network is expected to offer an infrastructure for the next generation Internet. For IP over WDM networks, a WDM protection mechanism is expected to provide a highly reliable network (i.e., robustness against the link/node failures). However, conventional IP also provides a reliability mechanism by its routing function. In this paper, we first formulate an optimization problem for designing IP over WDM networks with protection functionalities of WDM networks, by which we can obtain IP over WDM networks with high reliability. Our formulation results in a mixed integer linear problem (MILP). However, it is known that MILP can be solved only for a small number of variables, in our case, nodes and/or wavelengths. We therefore propose two heuristic algorithms, min-hop-first and largest-traffic-first approaches in order to assign the wavelength for backup lightpath. Our results show that the min-hop-first approach takes fewer wavelengths to construct the reliable network, that is, all of lightpaths can be protected using the WDM protection mechanism. However, our largest-traffic-first approach is also a good choice in the sense that the approach can be saved the traffic volume increased at the IP router by the link failure.

  • Improving TCP Performance for Wireless Cellular Networks by Adaptive FEC Combined with Explicit Loss Notification

    Masahiro MIYOSHI  Masashi SUGANO  Masayuki MURATA  

     
    LETTER

      Vol:
    E85-B No:10
      Page(s):
    2208-2213

    We propose a new adaptive FEC scheme combined with ELN (Explicit Loss Notification) that was proposed for improving TCP performance in wireless cellular networks. In our method, transmission errors on the wireless link are measured at the packet level and the error status is notified the TCP sender with ELN. According to this information, an appropriate FEC code is determined in order to maximize the TCP performance. We first compare the TCP performance using Snoop Protocol, ELN and the fixed FEC, through which we find the appropriate FEC code against given BER (bit error ratio). We then show how the adaptive FEC can be realized using our solution, and also examine the appropriate observation period of measuring BER enough for the fading speed on the noisy wireless link. We finally demonstrate that our method can achieve better performance than the conventional fixed FEC by using the Gilbert model as a wireless error model.

  • LAN Internetworking through Broadband ISDN

    Masayuki MURATA  Hideo MIYAHARA  

     
    INVITED PAPER

      Vol:
    E77-B No:3
      Page(s):
    294-305

    A local area network (LAN) can now provide high-speed data communications in a local area environment to establish distributed processing among personal computers and workstations, and the need for interconnecting LANs, which are geographically distributed, is naturally arising. Asynchronous Transfer Mode (ATM) technology has been widely recognized as a promising way to provide the high-speed wide area networks (WAN) for Broadband Integrated Services Digital Network (B-ISDN), and the commercial service offerings are expected in the near future. The ATM network seems to have a capability as a backbone network for interconnecting LANs, and the LAN interconnection is expected to be the first service in ATM networks. However, there remain some technical challenges for this purpose; one of the main difficulties in LAN interconnection is the support of connectionless traffic by the ATM network, which is basically a connection-oriented network. Another one is the way of achieving the very high-speed data transmission over the ATM network. In this paper, we first discuss a LAN internetworking methodology based on the current technology. Then, the recent deployments of LAN interconnection methods through B-ISDN are reviewed.

  • Improving Bandwidth Estimation for Internet Links by Statistical Methods

    Kazumine MATOBA  Shingo ATA  Masayuki MURATA  

     
    PAPER

      Vol:
    E84-B No:6
      Page(s):
    1521-1531

    Network dimensioning is an important issue to provide stable and QoS-rich communication services. A reliable estimation of bandwidths of links between the end-to-end path is a first step towards the network dimensioning. Pathchar is one of such tools for the bandwidth estimation for every link between two end hosts. However, pathchar still has several problems. If unexpectedly large errors are included or if route alternation is present during the measurement, the obtained estimation is much far from the correct one. We investigate the method to eliminate those errors in estimating the bandwidth. To increase the reliability on the estimation, the confidence interval for the estimated bandwidth is important. For this purpose, two approaches, parametric and nonparametric approaches, are investigated to add the confidence intervals. Another important issue is the method for controlling the measurement period to eliminate the measurement overheads. In this paper, we propose a measurement method to adaptively control the number of measurement data sets. Through experimental results, we show that our statistical approaches can provide the robust estimation regardless of the network conditions.

  • Design Algorithm for Virtual Path Based ATM Networks

    Byung Han RYU  Hiroyuki OHSAKI  Masayuki MURATA  Hideo MIYAHAEA  

     
    PAPER-Communication Networks and Services

      Vol:
    E79-B No:2
      Page(s):
    97-107

    An ATM network design algorithm is treated as a resource allocation problem. As an effective way to facilitate a coexistence of traffic with its diverse characteristics and different quality of service (QOS) requirements in ATM networks, a virtual path (VP) concept has been proposed. In attempting to design the VP (Virtual Path)-based ATM network, it requires to consider a network topology and traffic pattern generated from users for minimizing a network construction cost while satisfying QOS requirements such as cell / call loss probabilities and cell delay times. In this paper, we propose a new heuristic design algorithm for the VP-based ATM network under QOS constraints. A minimum bandwidth required to transfer a given amount of traffic is first obtained by utilizing an equivalent bandwidth method. After all the routes of VPs are temporarily established by means of the shortest paths, we try to minimize the network cost through the alternation of VP route, the separation of a single VP into several VPs, and the introduction of VCX nodes. To evaluate our design algorithm, we consider two kinds of traffic; voice traffic as low speed service and still picture traffic as high speed service. Through numerical examples, we demonstrate that our design method can achieve an efficient use of network resources, which results in the cost-effective VP-based ATM network.

1-20hit(115hit)