The search functionality is under construction.

Keyword Search Result

[Keyword] VSOP(2hit)

1-2hit
  • Development and Performance of the Real-Time VLBI Correlator (RVC)

    Satoru IGUCHI  Noriyuki KAWAGUCHI  Yasuhiro MURATA  Hideyuki KOBAYASHI  Kenta FUJISAWA  Tetsuya MIKI  

     
    PAPER-Sensing

      Vol:
    E83-B No:11
      Page(s):
    2527-2536

    The Real-time VLBI Correlator (RVC) is a new type processor for the Very-Long-Baseline Interferometry (VLBI). This correlator was primarily designed for supporting the VLBI Space Observatory Programme (VSOP). Two particular techniques, the fringe rotator after correlation and the lag-time extension technique, are newly developed for the RVC. The correlation circuit size of VLBI correlator is reduced to half by introducing the new fringe rotator, and it makes possible to realize a large delay window being essential in finding a cross correlation in real-time. The delay window can be changed flexibly with the lag-time extension technique, and its technique is useful to detect the fringe peak in a VSOP observation. The new correlator was installed at the Usuda Deep Space Center in Japan, and is used in VSOP and other domestic VLBI observations. In this paper, the key features of the Real-time VLBI Correlator (RVC) focusing on these advanced techniques are presented, and the results of its performance test are shown.

  • Development and Performance of the Terminal System for VLBI Space Observatory Programme (VSOP)

    Satoru IGUCHI  Noriyuki KAWAGUCHI  Seiji KAMENO  Hideyuki KOBAYASHI  Hitoshi KIUCHI  

     
    PAPER-Electronic and Radio Applications

      Vol:
    E83-B No:2
      Page(s):
    406-413

    The VSOP terminal is a new data-acquisition system for the Very-Long-Baseline Interferometry (VLBI). This terminal was primarily designed for ground telescopes in the VLBI Space Observatory Programme (VSOP). New technologies; higher-order sampling and digital filtering techniques, were introduced in the development. A cassette cart was also introduced, which supports 24-hour unattended operations at the maximum data rate of 256 Mbps. The higher-order sampling and digital filtering techniques achieve flat and constant phase response over bandwidth of 32 MHz without using expensive wide base-band converters. The digital filtering technique also enables a variety of observing modes defined on the VSOP terminal, even with a fixed sampling frequency in an A/D converter. The new terminals are installed at Nobeyama, Kashima, Usuda, Mizusawa, and Kagoshima radio observatories in Japan, and are being used in VSOP and other domestic VLBI observations. In this paper the key features of the VSOP terminal focusing on these advanced technologies are presented, and the results of performance tests are shown.