The search functionality is under construction.

Author Search Result

[Author] Hitoshi KIUCHI(5hit)

1-5hit
  • Radio Interferometer Using Fiber-Optic Links Modulated in the Radio-Frequency Range

    Jun AMAGAI  Hiroo KUNIMORI  Hitoshi KIUCHI  

     
    LETTER-Opto-Electronics

      Vol:
    E82-C No:1
      Page(s):
    141-146

    We investigated a radio interferometer for geodetic use that incorporates commercially available fiber-optic links modulated in the radio-frequency range, and a method for compensating for the delay occurring in the links. With this type of radio interferometer, we can perform baseline analysis without the need for estimating the clock difference between observation stations, which causes a relatively large error in the vertical component of the estimated position of the station. Another advantage of the interferometer is utilization of phase delay, which improves the accuracy of delay determination considerably. By analyzing the interferometer's signal-to-noise ratio, we estimated the practicable cable length to be 58.0 km. The results of preliminary experiments with short optical fiber links show that the differences in the cable delays of the fiber-optic links can be compensated for by calibration signals which make a round trip between the analysis station and the observation sites, and that phase delay can be measured successfully.

  • Realtime VLBI System Using Public ATM Network

    Shin'ichi HAMA  Hitoshi KIUCHI  Michito IMAE  Yukio TAKAHASHI  Hisao UOSE  Akihiro KANEKO  Kazuhiko NATORI  

     
    PAPER-ATM Switch and System Development

      Vol:
    E83-B No:2
      Page(s):
    246-252

    VLBI is an important application of ATM technology because it can transmit huge amounts of data. A single VLBI experiment typically generates data (which must be recorded and transported until they are cross-correlated) of tera-bit order at each separated observing site. Conventional VLBI not only requires manpower but also limits the maximum observation data rate. Therefore, a realtime VLBI using a private ATM network was developed recently, but it could not be utilized for regular VLBI experiment. Since utilization of public ATM is most realistic solution for realtime VLBI between ordinary observing sites, we have developed an interface equipment that connects VLBI observation and processing equipment to a public ATM network and demonstrated a successful experiment. This equipment supports VLBI's standard bit rates as 128 Mbps and 256 Mbps, though data rate for user's payload in 155.52 Mbps (STM-1/OC-3) ATM network is actually only 119.5 Mbps. It can easily step to higher networks as 622 Mbps.

  • Very Long Baseline Connected Interferometry via the STM-16 ATM Network

    Hitoshi KIUCHI  Yukio TAKAHASHI  Akihiro KANEKO  Hisao UOSE  Sotetsu IWAMURA  Takashi HOSHINO  Noriyuki KAWAGUCHI  Hideyuki KOBAYASHI  Kenta FUJISAWA  Jun AMAGAI  Junichi NAKAJIMA  Tetsuro KONDO  Satoru IGUCHI  Takeshi MIYAJI  Kazuo SORAI  Kouichi SEBATA  Taizoh YOSHINO  Noriyuki KURIHARA  

     
    PAPER-ATM Switch and System Development

      Vol:
    E83-B No:2
      Page(s):
    238-245

    The Communications Research Laboratory (CRL), the National Astronomical Observatory (NAO), the Institute of Space and Astronoutical Science (ISAS), and the Telecommunication Network Laboratory Group of Nippon Telegraph and Telephone Corporation (NTT) have developed a very-long-baseline-connected-interferometry array, maximum baseline-length was 208 km, using a high-speed asynchronous transfer mode (ATM) network with an AAL1 that corresponds to the constant bit-rate protocol. The very long baseline interferometry (VLBI) observed data is transmitted through a 2.488-Gbps [STM-16/OC-48] ATM network instead of being recorded onto magnetic tape. By combining antennas via a high-speed ATM network, a highly-sensitive virtual (radio) telescope system was realized. The system was composed of two real-time VLBI networks: the Key-Stone-Project (KSP) network of CRL (which is used for measuring crustal deformation in the Tokyo metropolitan area), and the OLIVE (optically linked VLBI experiment) network of NAO and ISAS which is used for astronomy (space-VLBI). These networks operated in cooperation with NTT. In order to realize a virtual telescope, the acquired VLBI data were corrected via the ATM networks and were synthesized using the VLBI technique. The cross-correlation processing and data observation were done simultaneously in this system and radio flares on the weak radio source (HR1099) were detected.

  • Development of Microwave Kinetic Inductance Detector for Cosmological Observations Open Access

    Kenichi KARATSU  Satoru MIMA  Shugo OGURI  Jihoon CHOI  R. M. THUSHARA DAMAYANTHI  Agnes DOMINJON  Noboru FURUKAWA  Hirokazu ISHINO  Hikaru ISHITSUKA  Atsuko KIBAYASHI  Yoshiaki KIBE  Hitoshi KIUCHI  Kensuke KOGA  Masato NARUSE  Tom NITTA  Takashi NOGUCHI  Takashi OKADA  Chiko OTANI  Shigeyuki SEKIGUCHI  Yutaro SEKIMOTO  Masakazu SEKINE  Shibo SHU  Osamu TAJIMA  Kenta TAKAHASHI  Nozomu TOMITA  Hiroki WATANABE  Mitsuhiro YOSHIDA  

     
    INVITED PAPER

      Vol:
    E98-C No:3
      Page(s):
    207-218

    A precise measurement of Cosmic Microwave Background (CMB) provides us rich information about the universe. In particular, its asymmetric polarization patterns, $B$-modes, are smoking gun signature of inflationary universe. Magnitude of the $B$-modes is order of 10,nK. Its measurement requires a high sensitive millimeter-wave telescope with a large number of superconducting detectors on its focal plane. Microwave Kinetic Inductance Detector (MKID) is appropriate detector for this purpose. MKID camera has been developed in cooperation of National Astronomical Observatory of Japan (NAOJ), Institute of Physical and Chemical Research (RIKEN), High Energy Accelerator Research Organization (KEK), and Okayama University. Our developments of MKID include: fabrication of high-quality superconducting film; optical components for a camera use; and readout electronics. For performance evaluation of total integrated system of our MKID camera, a calibration system was also developed. The system was incorporated in a 0.1 K dilution refrigerator with modulated polarization source. These developed technologies are applicable to other types of detectors.

  • Development and Performance of the Terminal System for VLBI Space Observatory Programme (VSOP)

    Satoru IGUCHI  Noriyuki KAWAGUCHI  Seiji KAMENO  Hideyuki KOBAYASHI  Hitoshi KIUCHI  

     
    PAPER-Electronic and Radio Applications

      Vol:
    E83-B No:2
      Page(s):
    406-413

    The VSOP terminal is a new data-acquisition system for the Very-Long-Baseline Interferometry (VLBI). This terminal was primarily designed for ground telescopes in the VLBI Space Observatory Programme (VSOP). New technologies; higher-order sampling and digital filtering techniques, were introduced in the development. A cassette cart was also introduced, which supports 24-hour unattended operations at the maximum data rate of 256 Mbps. The higher-order sampling and digital filtering techniques achieve flat and constant phase response over bandwidth of 32 MHz without using expensive wide base-band converters. The digital filtering technique also enables a variety of observing modes defined on the VSOP terminal, even with a fixed sampling frequency in an A/D converter. The new terminals are installed at Nobeyama, Kashima, Usuda, Mizusawa, and Kagoshima radio observatories in Japan, and are being used in VSOP and other domestic VLBI observations. In this paper the key features of the VSOP terminal focusing on these advanced technologies are presented, and the results of performance tests are shown.