The search functionality is under construction.

Author Search Result

[Author] Masato NARUSE(2hit)

1-2hit
  • Niobium-Based Kinetic Inductance Detectors for High-Energy Applications Open Access

    Masato NARUSE  Masahiro KUWATA  Tomohiko ANDO  Yuki WAGA  Tohru TAINO  Hiroaki MYOREN  

     
    INVITED PAPER-Superconducting Electronics

      Vol:
    E103-C No:5
      Page(s):
    204-211

    A lumped element kinetic inductance detector (LeKID) relying on a superconducting resonator is a promising candidate for sensing high energy particles such as neutrinos, X-rays, gamma-rays, alpha particles, and the particles found in the dark matter owing to its large-format capability and high sensitivity. To develop a high energy camera, we formulated design rules based on the experimental results from niobium (Nb)-based LeKIDs at 1 K irradiated with alpha-particles of 5.49 MeV. We defined the design rules using the electromagnetic simulations for minimizing the crosstalk. The neighboring pixels were fixed at 150 µm with a frequency separation of 250 MHz from each other to reduce the crosstalk signal as low as the amplifier-limited noise level. We examined the characteristics of the Nb-based resonators, where the signal decay time was controlled in the range of 0.5-50 µs by changing the designed quality factor of the detectors. The amplifier noise was observed to restrict the performance of our device, as expected. We improved the energy resolution by reducing the filling factor of inductor lines. The best energy resolution of 26 for the alpha particle of 5.49 MeV was observed in our device.

  • Development of Microwave Kinetic Inductance Detector for Cosmological Observations Open Access

    Kenichi KARATSU  Satoru MIMA  Shugo OGURI  Jihoon CHOI  R. M. THUSHARA DAMAYANTHI  Agnes DOMINJON  Noboru FURUKAWA  Hirokazu ISHINO  Hikaru ISHITSUKA  Atsuko KIBAYASHI  Yoshiaki KIBE  Hitoshi KIUCHI  Kensuke KOGA  Masato NARUSE  Tom NITTA  Takashi NOGUCHI  Takashi OKADA  Chiko OTANI  Shigeyuki SEKIGUCHI  Yutaro SEKIMOTO  Masakazu SEKINE  Shibo SHU  Osamu TAJIMA  Kenta TAKAHASHI  Nozomu TOMITA  Hiroki WATANABE  Mitsuhiro YOSHIDA  

     
    INVITED PAPER

      Vol:
    E98-C No:3
      Page(s):
    207-218

    A precise measurement of Cosmic Microwave Background (CMB) provides us rich information about the universe. In particular, its asymmetric polarization patterns, $B$-modes, are smoking gun signature of inflationary universe. Magnitude of the $B$-modes is order of 10,nK. Its measurement requires a high sensitive millimeter-wave telescope with a large number of superconducting detectors on its focal plane. Microwave Kinetic Inductance Detector (MKID) is appropriate detector for this purpose. MKID camera has been developed in cooperation of National Astronomical Observatory of Japan (NAOJ), Institute of Physical and Chemical Research (RIKEN), High Energy Accelerator Research Organization (KEK), and Okayama University. Our developments of MKID include: fabrication of high-quality superconducting film; optical components for a camera use; and readout electronics. For performance evaluation of total integrated system of our MKID camera, a calibration system was also developed. The system was incorporated in a 0.1 K dilution refrigerator with modulated polarization source. These developed technologies are applicable to other types of detectors.