The search functionality is under construction.

Keyword Search Result

[Keyword] Viterbi detection(9hit)

1-9hit
  • Non-Coherent MIMO of Per Transmit Antenna Differential Mapping (PADM) Employing Asymmetric Space-Time Mapping and Channel Prediction

    Hiroshi KUBO  Takuma YAMAGISHI  Toshiki MORI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2016/11/16
      Vol:
    E100-B No:5
      Page(s):
    808-817

    This paper proposes performance improvement schemes for non-coherent multiple-input multiple-output (MIMO) communication systems employing per transmit antenna differential mapping (PADM). PADM is one form of differential space-time coding (DSTC), which generates an independent differentially encoded sequence for each of the multiple transmit antennas by means of space-time coding and mapping. The features of the proposed schemes are as follows: 1) it employs an asymmetric space-time mapping instead of the conventional symmetric space-time mapping in order to lower the required signal to noise power ratio (SNR) for maintaining the bit error rate (BER) performance; 2) it employs an analytically derived branch metric criterion based on channel prediction for per-survivor processing (PSP) in order to track fast time-varying channels. Finally, computer simulation results confirm that the proposed schemes improve the required SNR by around 1dB and can track at the maximum Doppler frequency normalized by symbol rate of 5%.

  • Non-coherent MIMO Communication Systems Employing per Transmit Antenna Differential Mapping (PADM)

    Hiroshi KUBO  Masatsugu HIGASHINAKA  Akihiro OKAZAKI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E95-B No:10
      Page(s):
    3242-3251

    This paper proposes non-coherent multiple-input multi-ple-output (MIMO) communication systems employing per transmit antenna differential mapping (PADM), which generates an independent differentially encoded sequence for each of the multiple transmit antennas by means of space-time coding and mapping. At a receiver, the proposed PADM employs adaptive maximum-likelihood detection (MLD). The features of PADM are as follows: 1) it has excellent tracking performance for fast time-varying fading channels, because it can detect transmitted data without needing channel state information (CSI); 2) it can be applied not only to transmit diversity (TD) but also to spatial multiplexing (SM). In this paper, we analyze the adaptive MLD based on pseudo matrix inversion and derive its metric for data detection. In order to satisfy requirements on multiple transmitted sequences for the adaptive MLD, this paper proposes a mapping rule for PADM. Next, this paper describes a receiver structure based on per-survivor processing (PSP), which can drastically reduce the complexity of adaptive MLD. Finally, computer simulations confirm that the proposed non-coherent MIMO communication systems employing PADM have excellent tracking capability for TD and SM on fast time-varying fading channels.

  • A Multiple-Symbol Differential Detection Based on Channel Prediction for Fast Time-Varying Fading

    Hiroshi KUBO  Akihiro OKAZAKI  Kazuo TANADA  Bertrand PENTHER  Keishi MURAKAMI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E88-B No:8
      Page(s):
    3393-3400

    This paper discusses a generalized concept of multiple-symbol differential detection (MDD) and analytically derives weight parameters based on channel prediction for MDD on fast time-varying channels. At first, this paper shows that adaptive maximum-likelihood sequence estimation employing per-survivor processing (PSP-MLSE) with a single channel tap is similar concept to MDD. Next, the weight parameters for MDD are derived according to the channel estimation of PSP-MLSE based on a high order channel prediction. Finally, computer simulation confirms that MDD with the analytically derived parameters mitigates floor of bit error rate (BER) on fast time-varying fading channels without channel state information.

  • List Viterbi Equalizers with Two Kinds of Metric Criteria

    Hiroshi KUBO  Makoto MIYAKE  

     
    PAPER-Wireless Communication Technology

      Vol:
    E85-B No:2
      Page(s):
    487-494

    This paper proposes list Viterbi equalizers (LVEs) that use two kinds of metric criteria for wide-spread time-dispersive channels to achieve a good trade-off between complexity and bit error rate (BER) performance. For Viterbi equalization employing a state-reduction algorithm, the modified metric criterion proposed by Ungerboeck is not always equivalent to the squared Euclidean distance metric criterion. This paper proposes the following two schemes for the LVE: (1) to combine two kinds of metric criteria like combining diversity; (2) to select the metric criterion like selection diversity according to the channel impulse response. Finally, computer simulation shows that the proposed schemes improve BER performance on wide-spread frequency selective fading channels, even if the proposed schemes have smaller complexity than the conventional one.

  • A Survivor-Correction Viterbi Algorithm

    Hiroshi KUBO  Atsushi IWASE  Makoto MIYAKE  

     
    PAPER-Wireless Communication Technology

      Vol:
    E83-B No:6
      Page(s):
    1321-1329

    This paper proposes a survivor-correction Viterbi algorithm (SCVA) and presents its application to an iterative sequence estimation in order to improve bit error rate performance of decision-feedback sequence estimation (DFSE) in the presence of intersymbol interference. The SCVA can mitigate erroneous survivor selections due to DFSE, because it modifies the add-compare-select operation to an add-correct-compare-select operation. Finally, it is confirmed by computer simulation that complexity of the proposed scheme is independent of delay of the main delayed ray and its performance is superior to that of DFSE at the same number of states.

  • An Adaptive List-Output Viterbi Equalizer with Fast Compare-Select Operation

    Kazuo TANADA  Hiroshi KUBO  Atsushi IWASE  Makoto MIYAKE  

     
    PAPER

      Vol:
    E82-B No:12
      Page(s):
    2004-2011

    This paper proposes an adaptive list-output Viterbi equalizer (LVE) with fast compare-select operation, in order to achieve a good trade-off between bit error rate (BER) performance and processing speed. An LVE, which keeps several survivors for each state, has good BER performance in the presence of wide-spread intersymbol interference. However, the LVE suffers from large processing delay due to its sorting-based compare-select operation. The proposed adaptive LVE greatly reduces its processing delay, because it simplifies compare-select operation. In addition, computer simulation shows that the proposed LVE causes only slight BER performance degradation due to its simplification of compare-select operation. Thus, the proposed LVE achieves better BER performance than decision-feedback sequence estimation (DFSE) without an increase in processing delay.

  • Narrow-Band Phase-Rotating Phase-Shift Keying

    Hiroshi KUBO  Makoto MIYAKE  

     
    PAPER-Radio Communication

      Vol:
    E82-B No:4
      Page(s):
    627-635

    This paper proposes a phase-rotating phase-shift keying (PSK) modulation and shows that its narrow-band version is suitable for Viterbi equalization. The proposed PSK has the following features: 1) a spectrum shaping of the transmit/receive filters does not need to be restricted to the Nyquist criterion; 2) the transmitted data sequence is rotated for every symbol in order to reduce noise-correlation at the receiver. First, this paper discusses a performance degradation of bit error rate of Viterbi equalizers in the presence of the sampling timing offset or under time-dispersive frequency selective fading. Next, computer simulation confirms that π/2-shifted binary PSK with narrow-band spectrum shaping filter, which includes offset QPSK for its special case, solves the above mentioned performance degradation, keeping good spectrum efficiency equal to M-ary PSK.

  • Performance Improvement of PRML System for (1, 7) RLL Code

    Hisashi OSAWA  Makoto OKADA  Kohei WAKAMIYA  Yoshihiro OKAMOTO  

     
    PAPER-Recording and Memory Technologies

      Vol:
    E79-C No:10
      Page(s):
    1455-1461

    The performance improvement of the partial response maximum-likelihood (PRML) system for (1, 7) run-length limited (RLL) code is studied. As a new PRML system, PR (1, 1, 0, 1, 1) system called modified E2PR4 (ME2PR4 ) followed by Viterbi detector for (1, 7) RLL code is proposed. At first, a determination method of the tap weights in transversal filter to equalize to PR (1, 1, 0, 1, 1) characteristic taking account of a noise correlation is described. And the equalization characteristics of the transversal filter are evaluated. Then, a Viterbi detector for ME2PR4 utilizing the constraint of run-length of (1, 7) RLL code is presented. Finally, the bit-error rate is obtained by computer simulation and the performance is compared with that of the conventional PRML systems called PR4, EPR4 and E2PR4 systems with Viterbi detector. The results show that among these systems our system exhibits the best performance and the SNR improvement increases with the increase in the linear density.

  • Simplification of Viterbi Algorithm for (1, 7) RLL Code

    Yoshitake KURIHARA  Hisashi OSAWA  Yoshihiro OKAMOTO  

     
    PAPER

      Vol:
    E78-C No:11
      Page(s):
    1567-1574

    Simplification of the Viterbi algorithm and the error rate performance are presented for a partial response maximum-likelihood (PRML) system employing the PR(1, 1) system as a PR system for (1, 7) run-length limited (RLL) code. The minimum run-length of 1's or O's in the output sequence of the precoder for (1, 7) RLL code is limited to 2. Two kinds of simplified Viterbi algorithms using this run-length constraint are proposed. One algorithm requires the path memory length of only two in the Viterbi detector. The Viterbi detector based on the other algorithm is equivalent to the simple PR(1, 1) system followed by a threshold detector. The bit-error rates of PRML systems with Viterbi detectors based on these algorithms are obtained by computer simulation and their performance is compared with that of conventional PRML systems for (1, 7) RLL code. It is shown that the proposed PRML system exhibits better performance than conventional PRML systems at high recording density.